Independent Encoding of Position and Orientation by Population Responses in Primary Visual Cortex

  • Robert A. Frazor
  • Andrea Benucci
  • Matteo Carandini
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4729)


The primary visual cortex (area V1) encodes visual attributes such as direction of motion, orientation, and position through the activity of populations of neurons. We asked how this activity is affected by different combinations of these attributes. We measured population responses by imaging voltage-sensitive dye fluorescence in area V1 of anesthetized cats with dye RH-1692 in response to stimuli that are both oriented and localized in space. We tested whether the resulting activation could be explained by a simple rule of combination that assumes the activation is a point-by-point multiplication of the map of orientation preference with a blurred prediction of the stimulus’ footprint in cortex derived from a map of retinotopy. This simple rule of combination provided good fits of the responses and implies that the effects of stimulus orientation and position on population responses are independent.


Visual Cortex Retinotopy Orientation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Basole, A., White, L.E., Fitzpatrick, D.: Mapping multiple features in the population response of visual cortex. Nature 423, 986–990 (2003)CrossRefGoogle Scholar
  2. 2.
    Mante, V., Carandini, M.: Mapping of stimulus energy in primary visual cortex. J. Neurophysiol. 94, 788–798 (2005)CrossRefGoogle Scholar
  3. 3.
    Grinvald, A., Hildesheim, R.: VSDI: a new era in functional imaging of cortical dynamics. Nat. Rev. Neurosci. 5, 874–885 (2004)CrossRefGoogle Scholar
  4. 4.
    Gilbert, C.D., Kelly, J.P.: The projections of cells in different layers of the cat’s visual cortex. J. Comp. Neurol. 163, 81–106 (1975)CrossRefGoogle Scholar
  5. 5.
    Bosking, W.H., Crowley, J.C., Fitzpatrick, D.: Spatial coding of position and orientation in primary visual cortex. Nat. Neurosci. 5, 874–882 (2002)CrossRefGoogle Scholar
  6. 6.
    Albus, K.: A quantitative study of the projection area of the central and the paracentral visual field in area 17 of the cat. I. The precision of the topography. Exp. Brain Res. 24, 159–179 (1975)Google Scholar
  7. 7.
    Reid, R.C., Victor, J.D., Shapley, R.M.: The use of m-sequences in the analysis of visual neurons: linear receptive field properties. Vis. Neurosci. 14, 1015–1027 (1997)CrossRefGoogle Scholar
  8. 8.
    Shoham, D., et al.: Imaging cortical dynamics at high spatial and temporal resolution with novel blue voltage-sensitive dyes. Neuron 24, 791–802 (1999)CrossRefGoogle Scholar
  9. 9.
    Sharon, D., Grinvald, A.: Dynamics and constancy in cortical spatiotemporal patterns of orientation processing. Science 295, 512–515 (2002)CrossRefGoogle Scholar
  10. 10.
    Tusa, R.J., Palmer, L.A., Rosenquist, A.C.: The retinotopic organization of area 17 (striate cortex) in the cat. J. Comp. Neurol. 177, 213–236 (1978)CrossRefGoogle Scholar
  11. 11.
    Tusa, R.J., Rosenquist, A.C., Palmer, L.A.: Retinotopic organization of areas 18 and 19 in the cat. J. Comp. Neurol. 185, 657–678 (1979)CrossRefGoogle Scholar
  12. 12.
    Hubel, D.H., Wiesel, T.N.: Uniformity of monkey striate cortex: a parallel relationship between field size, scatter, and magnification factor. J. Comp. Neurol. 158, 295–305 (1974)CrossRefGoogle Scholar
  13. 13.
    Mooser, F., Bosking, W.H., Fitzpatrick, D.: A morphological basis for orientation tuning in primary visual cortex. Nat. Neurosci. 7, 872–879 (2004)CrossRefGoogle Scholar
  14. 14.
    Alonso, J.M., Usrey, W.M., Reid, R.C.: Rules of connectivity between geniculate cells and simple cells in cat primary visual cortex. J. Neurosci. 21, 4002–4015 (2001)Google Scholar
  15. 15.
    Swindale, N.V., et al.: Visual cortex maps are optimized for uniform coverage. Nat. Neurosci. 3, 822–826 (2000)CrossRefGoogle Scholar
  16. 16.
    Blasdel, G., Campbell, D.: Functional retinotopy of monkey visual cortex. J. Neurosci. 21, 8286–8301 (2001)Google Scholar
  17. 17.
    Das, A., Gilbert, C.D.: Distortions of visuotopic map match orientation singularities in primary visual cortex. Nature 387, 594–598 (1997)CrossRefGoogle Scholar
  18. 18.
    Buzas, P., et al.: Independence of visuotopic representation and orientation map in the visual cortex of the cat. Eur. J. Neurosci. 18, 957–968 (2003)CrossRefGoogle Scholar
  19. 19.
    Adams, D.L., Horton, J.C.: A precise retinotopic map of primate striate cortex generated from the representation of angioscotomas. J. Neurosci. 23, 3771–3789 (2003)Google Scholar
  20. 20.
    Adams, D.L., Horton, J.C.: The representation of retinal blood vessels in primate striate cortex. J. Neurosci. 23, 5984–5997 (2003)Google Scholar
  21. 21.
    Sceniak, M.P., et al.: Contrast’s effect on spatial summation by macaque V1 neurons. Nat. Neurosci. 2, 733–739 (1999)CrossRefGoogle Scholar
  22. 22.
    Sengpiel, F., Sen, A., Blakemore, C.: Characteristics of surround inhibition in cat area 17. Exp. Brain Res. 116, 216–228 (1997)CrossRefGoogle Scholar
  23. 23.
    DeAngelis, G.C., Freeman, R.D., Ohzawa, I.: Length and width tuning of neurons in the cat’s primary visual cortex. J. Neurophysiol. 71, 347–374 (1994)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Robert A. Frazor
    • 1
  • Andrea Benucci
    • 1
  • Matteo Carandini
    • 1
  1. 1.Smith-Kettlewell Eye Research Institute, 2318 Fillmore Street, San Francisco, CA 94115USA

Personalised recommendations