Input Identification in the Ornstein-Uhlenbeck Neuronal Model with Signal Dependent Noise

  • Laura Sacerdote
  • Cristina Zucca
  • Petr Láanskáy
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4729)


The Ornstein-Uhlenbeck neuronal model is investigated under the assumption that the amplitude of the noise depends functionally on the signal. This assumption is deduced from the procedure in which the model is built and it corresponds to commonly accepted understanding that with increasing magnitude of a measured quantity, the measurement errors (noise) are also increasing. This approach based on the signal dependent noise permits a new view on searching an optimum signal with respect to its possible identification. Two measures are employed for this purpose. The first one is the traditional one and is based exclusively on the firing rate. This criterion gives as an optimum signal any sufficiently strong signal. The second measure, which takes into the account not only the firing rate but also its variability and which is based on Fisher information determines uniquely the optimum signal in the considered model. This is in contrast to the Ornstein-Uhlenbeck model with constant amplitude of the noise.


Transfer Function Fisher Information Stochastic Resonance Noise Amplitude Interspike Interval 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adrian, E.D.: The Basis of Sensation: The Action of the Sense Organs. WW Norton, New York (1928)Google Scholar
  2. 2.
    Amari, S., Nakahara, H.: Difficulty of Singularity in Population Coding. Neur. Comput. 17, 839–858 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Burkitt, A.N.: A review of the integrate-and-fire neuron model. II. Inhomogeneous synaptic input and network properties. Biol. Cybernet. 95, 97–112 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Cecchi, G.A., Sigman, M., Alonso, J.-M., Martinez, L., Chialvo, D.R., Magnasco, M.O.: Noise in neurons is message dependent. PNAS 97, 5557–5561 (2000)CrossRefGoogle Scholar
  5. 5.
    Ditlevsen, S., Lánský, P.: Estimation of the input parameters in the Ornstein-Uhlenbeck neuronal model. Phys. Rev. E 71(3), 11907 (2005)CrossRefGoogle Scholar
  6. 6.
    Gerstner, W., Kistler, W.M.: Spiking neuron models. Single neurons, populations, plasticity. Cambridge University Press, Cambridge (2002)zbMATHGoogle Scholar
  7. 7.
    Giraudo, M.T., Sacerdote, L.: An improved technique for the simulation of first passage times for diffusion processes. Commun. Statist.- Simula. 28, 1135–1163 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Giraudo, M.T., Sacerdote, L., Zucca, C.: A Monte Carlo method for the simulation of first passage times of diffusion processes. Methodol. Comput. Appl. Probab. 3, 215–231 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Greenwood, P.E., Ward, L., Russell, D., Neiman, A., Moss, F.: Stochastic resonance enhances the electrosensory information available to paddlefish for prey capture. Phys. Rev. Lett. 84, 4773–4776 (2000)CrossRefGoogle Scholar
  10. 10.
    Greenwood, P.E., Ward, L., Wefelmeyer, W.: Statistical analysis of stochastic resonance in a simple setting. Phys. Rev. E 60, 4687–4695 (1999)CrossRefGoogle Scholar
  11. 11.
    Inoue, J., Sato, S., Ricciardi, L.M.: On the parameter estimation for diffusion models of single neurons’ activities. Biol. Cybern. 73, 209–221 (1995)zbMATHCrossRefGoogle Scholar
  12. 12.
    Johnson, D.H., Ray, W.: Optimal Stimulus Coding by Neural Populations Using Rate Codes. J. Comput. Neurosci. 16, 129–138 (2004)CrossRefGoogle Scholar
  13. 13.
    Laming, D.R.J.: Mathematical psychology. Academic Press, New York (1973)Google Scholar
  14. 14.
    Lánský, P., Sacerdote, L.: The Ornstein-Uhlenbeck neuronal model with signal-dependent noise. Phys. Lett. A 285, 132–140 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Lánský, P., Sacerdote, L., Zucca, C.: Optimum signal in a diffusion leaky integrate-and-fire neuronal model. Mathematical Biosciences 207(2), 261–274 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Lánský, P., Greenwood, P.E.: Optimal signal estimation in neuronal models. Neur. Comput. 17, 2240–2257 (2005)zbMATHCrossRefGoogle Scholar
  17. 17.
    Lánský, P., Sanda, P., He, J.: The parameters of the stochastic leaky integrate-and-fire neuronal model. J. Comput. Neurosci. 21, 211–223 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Rao, R.C.: Linear Statistical Inference and its Applications. John Wiley, New York (2002)Google Scholar
  19. 19.
    Ricciardi, L.M., Sacerdote, L.: The Ornstein-Uhlenbeck process as a model of neuronal activity. Biol. Cybern. 35, 1–9 (1979)zbMATHCrossRefGoogle Scholar
  20. 20.
    Ricciardi, L.M., Sato, S.: Diffusion processes and first-passage-time problems. In: Ricciardi, L.M. (ed.) Lectures in Applied Mathematics and Informatics, Manchester Univ. Press, Manchester (1990)Google Scholar
  21. 21.
    Sacerdote, L., Lánský, P.: Interspike interval statistics in the Ornstein-Uhlenbeck neuronal model with signal-dependent noise. BioSys. 67, 213–219 (2002)CrossRefGoogle Scholar
  22. 22.
    Stein, R.B.: A theoretical analysis of neuronal variability. Biophys. J. 5, 173–195 (1965)CrossRefGoogle Scholar
  23. 23.
    Stemmler, M.: A single spike suffices: The simplest form of stochastic resonance in model neurons. Network: Comput. Neur. Syst. 7, 687–716 (1996)zbMATHCrossRefGoogle Scholar
  24. 24.
    Tuckwell, H.C.: Introduction to Theoretical Neurobiology. Cambridge Univ. Press, Cambridge (1988)Google Scholar
  25. 25.
    Tuckwell, H.C., Richter, W.: Neuronal interspike time distribution and the estimation of neurophysiological and neuroanatomical parameters. J. Theor. Biol. 71, 167–183 (1978)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Laura Sacerdote
    • 1
  • Cristina Zucca
    • 1
  • Petr Láanskáy
    • 2
  1. 1.Dept. of Mathematics, University of Torino, Via Carlo Alberto 10, 10123 TorinoItaly
  2. 2.Institute of Physiology, Academy of Sciences of Czech Republic, Videnskáa 1083, 142 20 Prague 4Czech Republic

Personalised recommendations