Skip to main content

Input Identification in the Ornstein-Uhlenbeck Neuronal Model with Signal Dependent Noise

  • Conference paper
Advances in Brain, Vision, and Artificial Intelligence (BVAI 2007)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4729))

Included in the following conference series:

  • 1497 Accesses

Abstract

The Ornstein-Uhlenbeck neuronal model is investigated under the assumption that the amplitude of the noise depends functionally on the signal. This assumption is deduced from the procedure in which the model is built and it corresponds to commonly accepted understanding that with increasing magnitude of a measured quantity, the measurement errors (noise) are also increasing. This approach based on the signal dependent noise permits a new view on searching an optimum signal with respect to its possible identification. Two measures are employed for this purpose. The first one is the traditional one and is based exclusively on the firing rate. This criterion gives as an optimum signal any sufficiently strong signal. The second measure, which takes into the account not only the firing rate but also its variability and which is based on Fisher information determines uniquely the optimum signal in the considered model. This is in contrast to the Ornstein-Uhlenbeck model with constant amplitude of the noise.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adrian, E.D.: The Basis of Sensation: The Action of the Sense Organs. WW Norton, New York (1928)

    Google Scholar 

  2. Amari, S., Nakahara, H.: Difficulty of Singularity in Population Coding. Neur. Comput. 17, 839–858 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  3. Burkitt, A.N.: A review of the integrate-and-fire neuron model. II. Inhomogeneous synaptic input and network properties. Biol. Cybernet. 95, 97–112 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  4. Cecchi, G.A., Sigman, M., Alonso, J.-M., Martinez, L., Chialvo, D.R., Magnasco, M.O.: Noise in neurons is message dependent. PNAS 97, 5557–5561 (2000)

    Article  Google Scholar 

  5. Ditlevsen, S., Lánský, P.: Estimation of the input parameters in the Ornstein-Uhlenbeck neuronal model. Phys. Rev. E 71(3), 11907 (2005)

    Article  Google Scholar 

  6. Gerstner, W., Kistler, W.M.: Spiking neuron models. Single neurons, populations, plasticity. Cambridge University Press, Cambridge (2002)

    MATH  Google Scholar 

  7. Giraudo, M.T., Sacerdote, L.: An improved technique for the simulation of first passage times for diffusion processes. Commun. Statist.- Simula. 28, 1135–1163 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  8. Giraudo, M.T., Sacerdote, L., Zucca, C.: A Monte Carlo method for the simulation of first passage times of diffusion processes. Methodol. Comput. Appl. Probab. 3, 215–231 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  9. Greenwood, P.E., Ward, L., Russell, D., Neiman, A., Moss, F.: Stochastic resonance enhances the electrosensory information available to paddlefish for prey capture. Phys. Rev. Lett. 84, 4773–4776 (2000)

    Article  Google Scholar 

  10. Greenwood, P.E., Ward, L., Wefelmeyer, W.: Statistical analysis of stochastic resonance in a simple setting. Phys. Rev. E 60, 4687–4695 (1999)

    Article  Google Scholar 

  11. Inoue, J., Sato, S., Ricciardi, L.M.: On the parameter estimation for diffusion models of single neurons’ activities. Biol. Cybern. 73, 209–221 (1995)

    Article  MATH  Google Scholar 

  12. Johnson, D.H., Ray, W.: Optimal Stimulus Coding by Neural Populations Using Rate Codes. J. Comput. Neurosci. 16, 129–138 (2004)

    Article  Google Scholar 

  13. Laming, D.R.J.: Mathematical psychology. Academic Press, New York (1973)

    Google Scholar 

  14. Lánský, P., Sacerdote, L.: The Ornstein-Uhlenbeck neuronal model with signal-dependent noise. Phys. Lett. A 285, 132–140 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  15. Lánský, P., Sacerdote, L., Zucca, C.: Optimum signal in a diffusion leaky integrate-and-fire neuronal model. Mathematical Biosciences 207(2), 261–274 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  16. Lánský, P., Greenwood, P.E.: Optimal signal estimation in neuronal models. Neur. Comput. 17, 2240–2257 (2005)

    Article  MATH  Google Scholar 

  17. Lánský, P., Sanda, P., He, J.: The parameters of the stochastic leaky integrate-and-fire neuronal model. J. Comput. Neurosci. 21, 211–223 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  18. Rao, R.C.: Linear Statistical Inference and its Applications. John Wiley, New York (2002)

    Google Scholar 

  19. Ricciardi, L.M., Sacerdote, L.: The Ornstein-Uhlenbeck process as a model of neuronal activity. Biol. Cybern. 35, 1–9 (1979)

    Article  MATH  Google Scholar 

  20. Ricciardi, L.M., Sato, S.: Diffusion processes and first-passage-time problems. In: Ricciardi, L.M. (ed.) Lectures in Applied Mathematics and Informatics, Manchester Univ. Press, Manchester (1990)

    Google Scholar 

  21. Sacerdote, L., Lánský, P.: Interspike interval statistics in the Ornstein-Uhlenbeck neuronal model with signal-dependent noise. BioSys. 67, 213–219 (2002)

    Article  Google Scholar 

  22. Stein, R.B.: A theoretical analysis of neuronal variability. Biophys. J. 5, 173–195 (1965)

    Article  Google Scholar 

  23. Stemmler, M.: A single spike suffices: The simplest form of stochastic resonance in model neurons. Network: Comput. Neur. Syst. 7, 687–716 (1996)

    Article  MATH  Google Scholar 

  24. Tuckwell, H.C.: Introduction to Theoretical Neurobiology. Cambridge Univ. Press, Cambridge (1988)

    Google Scholar 

  25. Tuckwell, H.C., Richter, W.: Neuronal interspike time distribution and the estimation of neurophysiological and neuroanatomical parameters. J. Theor. Biol. 71, 167–183 (1978)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Francesco Mele Giuliana Ramella Silvia Santillo Francesco Ventriglia

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sacerdote, L., Zucca, C., Láanskáy, P. (2007). Input Identification in the Ornstein-Uhlenbeck Neuronal Model with Signal Dependent Noise. In: Mele, F., Ramella, G., Santillo, S., Ventriglia, F. (eds) Advances in Brain, Vision, and Artificial Intelligence. BVAI 2007. Lecture Notes in Computer Science, vol 4729. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75555-5_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-75555-5_35

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-75554-8

  • Online ISBN: 978-3-540-75555-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics