Advertisement

Molecular Mechanism of Glutamate-Triggered Brain Glucose Metabolism: A Parametric Model from FDG PET-Scans

  • Paola Lecca
  • Michela Lecca
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4729)

Abstract

We present a computational model describing glutamate-stimulated glucose uptake and use into astrocytes. It consists of a set of ordinary differential equations, that specify the time-behavior of the main molecular species involved in the astrocytic glucose use (i. e. glutamate, glucose, Na + , β-threohydroxyaspartate) and the dynamical rates of glutamate, glucose and Na +  uptake. The kinetic rate constants of the model have been identified on a set of dynamic PET images. The relevance of such a model to the PET functional brain imaging consists in providing an in silico framework, in which to experiment the dynamics of glucose metabolism and its spatial mapping to elucidate their still elusive aspects.

Keywords

Glucose Uptake Brain Slice Glutamate Transporter Glutamate Uptake Kinetic Rate Constant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bergles, D.E., Jahr, C.E.: Glials contribution to glutamate uptake at Schaffer collateral-commissural synapses in the hippocampus. J. Neurosci. 18, 7709–7716 (1998)Google Scholar
  2. 2.
    Bignami, A.: Glial cells in the central nervous system. Discussions in Neuroscience 8(1), 1–45 (1991)Google Scholar
  3. 3.
    Hertz, L., Peng, L., Dienel, G.A.: Energy metabolism in astrocytes: high rate of oxidative metabolism and spatiotemporal dependence on glycoslysis/glycogenolysis. J. of Cerebral Blood Flow & Metabolism 27, 219–249 (2007)CrossRefGoogle Scholar
  4. 4.
    Kasiscke, K.A., Vishwasrao, H.D., Fisher, P.J., Zipfel, W.R., Webb, W.W.: Neuronal activity triggers neuronal oxidative metabolism followed by astrocytic glycolysis. Science 305(5680), 99–103 (2004)CrossRefGoogle Scholar
  5. 5.
    Kimura, Y., Takabayashi, Y., Oda, K., Ishii, K., Ishiwata, K.: Functional image on glucose metabolism in brain using PET with short time scan. In: Procs of the 25th Annual International Conference of the IEEE EMBS, Cancun, Mexico, IEEE Computer Society Press, Los Alamitos (2003)Google Scholar
  6. 6.
    Magistretti, P.J., Pellerin, L.: Cellular mechanisms of brain energy metabolism and their relevance to functional brain imaging. Phil. Trans. R. Soc. Lond. B 354, 1155–1163 (1999)CrossRefGoogle Scholar
  7. 7.
    Marland, E.S., Keizer, J.E.: Transporters and Pumps. In: Fall, C.P., Marland, E.S., Wagner, J.M., Tyson, J.J. (eds.) Computational Cell Biology, ch. 3, Springer, Heidelberg (2000)Google Scholar
  8. 8.
    Pellerin, L., Magistretti, P.J.: Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilisation. Proc. Natl. Acad. Sci. 91, 10625–10628 (1994)CrossRefGoogle Scholar
  9. 9.
    Pellerin, L., Magistretti, P.J.: Glutamate uptake stimulates Na + /K + -ATPase activity in astrocytes via an activation of the Na + /K + -ATPase. J. Neurochem. 69, 2132–2137 (1997)CrossRefGoogle Scholar
  10. 10.
    Shulman, R.G.: Functional imaging studies: linking mind and basic neuroscience. Am. J. of Psychiatry (2001)Google Scholar
  11. 11.
    Sokoloff, L., Reivich, M., Kennedy, C., des Rosiers, M.H., Patlak, C.S., Pettigrew, K.D., Sakurada, O., Shinoara, M.: The [14C]deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat. J. of Neurochem. 26, 897–916 (1977)CrossRefGoogle Scholar
  12. 12.
    Sokoloff, L.: Relationship between functional activity and energy metabolism in the nervous system: whether, where and why? In: Lassen, N.A., Ingvar, D.H., Raichle, M.E., Friberg, L. (eds.) Brain work and mental activity, pp. 52–64. Munskgaard, Copenhagen (1991)Google Scholar
  13. 13.
    Svarer, C., Iaw, I., Holm, S., Mørch, N., Paulson, O.: Estimation of the glucose metabolism from dynamic PET-scan using neural networks (1995), available at citeseer.ist.psu.edu/227145.html
  14. 14.
    Takano, T., Tian, G.F., Peng, W., Lou, N., Libionka, W., Han, X., Nedergaard, M.: Astrocytes mediated control of cerebral blood flow. Nat. Neurosci. 9, 260–267 (2006)CrossRefGoogle Scholar
  15. 15.
    Volterra, A., Meldolesi, J.: Astrocytes, from brain glue to communication: the revolution continues. Nat. Rev. Neurosci. 6, 626–640 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Paola Lecca
    • 1
  • Michela Lecca
    • 2
  1. 1.The Microsoft Research - University of Trento, Centre for Computational and Systems Biology, piazza Manci 17, 38100 Povo (Trento)Italy
  2. 2.Fondazione Bruno Kessler - Centre for Scientific and Technological Research, via Sommarive 18, 38050 Povo (Trento)Italy

Personalised recommendations