3D Reconstruction and Mapping from Stereo Pairs with Geometrical Rectification

  • Antonio Javier Gallego
  • Rafael Molina
  • Patricia Compañ
  • Carlos Villagrá
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4729)


In this paper a new method for reconstructing 3D scenes from stereo images is presented, as well as an algorithm for environment mapping, as an application of the previous method. In the reconstruction process a geometrical rectification filter is used to remove the conical perspective of the images. It is essential to recover the geometry of the scene (with real data of depth and volume) and to achieve a realistic appearance in 3D reconstructions. It also uses sub-pixel precision to solve the lack of information for distant objects. Finally, the method is applied to a mapping algorithm in order to show its usefulness.


Mobile Robot Augmented Reality Stereo Image Stereo Vision Stereo Pair 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Sanchiz, J.M., Fisher, R.B.: Viewpoint Estimation in Three-Dimensional Images Taken with Perspective Range Sensors. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(11), 1324–1329 (2000)CrossRefGoogle Scholar
  2. 2.
    Moravec, H.P.: Robot spatial perception by stereoscopic vision and 3D evidence grids. The Robotics Institute Carnegie Mellon University. Pittsburgh, PA (1996)Google Scholar
  3. 3.
    Stephen Se, D., Lowe, J.L.: Vision-based mobile robot localization and mapping using scale-invariant features. In: ICRA (2001)Google Scholar
  4. 4.
    Martin, C., Thrun, S.: Real-time acquisition of compact volumetric maps with mobile robots. In: ICRA (2002)Google Scholar
  5. 5.
    Martinsanz, G.P., de la Cruz García, J.M.: Visión por computador: imágenes digitales y aplicaciones. Ra-Ma, Madrid, D.L. (eds.) (2001)Google Scholar
  6. 6.
    Vogiatzis, G., Torr, P.H.S., Cipolla, R.: Multi-view stereo via Volumetric Graph-cuts. In: CVPR, pp. 391–398 (2005)Google Scholar
  7. 7.
    Zhang, L., Seitz, S.M.: Parameter estimation for MRF stereo. In: CVPR. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Diego, CA, IEEE Computer Society Press, Los Alamitos (2005)Google Scholar
  8. 8.
    Sinha, S., Pollefeys, M.: Multi-view Reconstruction using Photo-consistency and Exact Silhouette Constraints: A Maximum-Flow Formulation. In: ICCV (2005)Google Scholar
  9. 9.
    Broggi, A.: Robust Real-Time Lane and Road Detection in Critical Shadow Conditions. In: Proceedings IEEE International Symposium on Computer Vision, Coral Gables, Florida, IEEE Computer Society Press, Los Alamitos (1995)Google Scholar
  10. 10.
    Compañ, P., Satorre, R., Rizo, R.: Disparity estimation in stereoscopic vision by simulated annealing. Artificial Intelligence research and development, pp. 160–167. IOS Press, Amsterdam (2003)Google Scholar
  11. 11.
    Trucco, E., Verri, A.: Introductory techniques for 3-D Computer Vision. Prentice-Hall, Englewood Cliffs (1998)Google Scholar
  12. 12.
    Cox, I., Ignoran, S., Rao, S.: A maximum lilelihood stereo algorithm. Computer Vision and Image Understanding 63 (1996)Google Scholar
  13. 13.
    Coughlan, J., Yuille, A.L.: Manhattan World: Orientation and Outlier Detection by Bayesian Inference. Neural Computation 15(5), 1063–1088 (2003)CrossRefGoogle Scholar
  14. 14.
    Faugeras, O.: Three-dimensional computer vision: a geometric viewpoint. MIT Press, Cambridge, Massachusetts (1993)Google Scholar
  15. 15.
    Gallego Sánchez, A.J., Molina Carmona, R., Villagrá Arnedo, C.: Three-Dimensional Mapping from Stereo Images with Geometrical Rectification. In: Perales, F.J., Fisher, R.B. (eds.) AMDO 2006. LNCS, vol. 4069, pp. 213–222. Springer, Heidelberg (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Antonio Javier Gallego
    • 1
  • Rafael Molina
    • 1
  • Patricia Compañ
    • 1
  • Carlos Villagrá
    • 1
  1. 1.Grupo de Informática Industrial e Inteligencia Artificial, Universidad de Alicante, Ap.99, E-03080, AlicanteSpain

Personalised recommendations