Advertisement

Digital Removal of Blotches with Variable Semi-transparency Using Visibility Laws

  • Vittoria Bruni
  • Andrew Crawford
  • Anil Kokaram
  • Domenico Vitulano
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4729)

Abstract

This paper presents an automatic technique that removes blotches from archived photographs. In particular, we focus on blotches caused by water and dirt that cause a variable semi-transparency in the degraded region. The proposed digital removal consists of an automatic shrinking of the blotch that preserves the original image details. This operation is based on visibility laws in the wavelet domain. Preliminary experimental results show that the proposed model is also effective on critical blotches produced by dust and dirt.

Keywords

Wavelet transform visibility laws Bayes minimization blotch removal 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Stanco, F., Ramponi, G., De Polo, A.: Towards the Automated Restoration of Old Photographic Prints: A Survey. In: IEEE EUROCON, Ljubljana, Slovenia, September 2003, pp. 370–374. IEEE Computer Society Press, Los Alamitos (2003)Google Scholar
  2. 2.
    Bruni, V., Crawford, A., Stanco, F., Vitulano, D.: Visibility Based Detection and Removal of Semi-Transparent Blotches on Archived Documents. In: VISAPP. International Conference on Computer Vision Theory and Applications, Setubal, Portugal, pp. 64–71 (February 2006)Google Scholar
  3. 3.
    Stanco, F., Tenze, L., Ramponi, G.: Virtual restoration of vintage photographic prints affected by foxing and water blotches. Journal of Electronic Imaging 14(4) (Decemebr 2005)Google Scholar
  4. 4.
    Ramponi, G., Stanco, F., Dello Russo, W., Pelusi, S., Mauro, P.: Digital Automated Restoration of Manuscripts and Antique Printed Books. In: EVA 2005. Electronic Imaging and the Visual Arts, Florence, Italy, March 2005, pp. 186–191 (2005)Google Scholar
  5. 5.
    Bertalmio, M., Shapiro, G., Caselles, V., Bellester, B.: Image inpainting. In: Proc. of SIGGRAPH 2000, pp. 417–424 (2000)Google Scholar
  6. 6.
    Criminisi, A., Perez, P., Toyama, K.: Region filling and object removal by exemplar-based image inpainting. IEEE Transactions on Image Processing 13(9), 1200–1212 (2004)CrossRefGoogle Scholar
  7. 7.
    Gonzalez, R.C., Woods, R.E.: Digital Image Processing, 2nd edn. Prentice-Hall, Englewood Cliffs (2002)Google Scholar
  8. 8.
    Bruni, V., Crawford, A.J., Vitulano, D.: Visibility Based Detection Of Complicated Objects: A Case Study. In: Proc. of CVMP 2006, pp. 55–64 (November 2006)Google Scholar
  9. 9.
    Damera-Venkata, N., Kite, T.D., Evans, B.L., Bovik, A.C.: Image Quality Assessment Based on a Degradation Model. IEEE Transactions on Image Processing 9(4), 636–650 (2000)CrossRefGoogle Scholar
  10. 10.
    Gutiérrez, J., Ferri, F.J., Malo, J.: Regularization Operators for Natural Images Based on Nonlinear Perception Models. IEEE Transactions on Image Processing 15(1), 189–200 (2006)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Carnec, M., Barba, D.: Simulating the human visual system: towards objective measurement of visual annoyance. IEEE Transactions on Systems, Man and Cybernetics 6 (October 2002)Google Scholar
  12. 12.
    Pappas, T.N., Safranek, R.J.: Perceptual criteria for image quality evaluation. In: Bovik, A.C. (ed.) Handbook of Image and Video Processing, pp. 669–684 (2000)Google Scholar
  13. 13.
    Salomon, D.: Data Compression: The complete reference. Springer, Heidelberg (2004)zbMATHGoogle Scholar
  14. 14.
    Clarke, A., Blake, T.D., Carruthers, K., Woodward, A.: Spreading and Imbibition of Liquid Droplets on Porous Surfaces. Langmuir Letters 2002 American Chemical Society 18(8), 2980–2984 (2002)Google Scholar
  15. 15.
    Seveno, D., Ledauphine, V., Martic, G., Voué, M.: Spreading Drop Dynamics on Porous Surfaces. Langmuir 2002 American Chemical Society 18(20), 7496–7502 (2002)Google Scholar
  16. 16.
    Peli, E.: Contrast in complex images. Journal of the Optical Society of America 7(10), 2032–2040 (1990)CrossRefGoogle Scholar
  17. 17.
    Nadenau, M.J., Reichel, J., Kunt, M.: Wavelet-Based Color Image Compression: Exploiting the Contrast Sensitivity Function. IEEE Transactions on Image Processing 12(1), 58–70 (2003)CrossRefGoogle Scholar
  18. 18.
    Mallat, S.: A Wavelet Tour of Signal Processing. Academic Press, London (1998)zbMATHGoogle Scholar
  19. 19.
    Wang, J.Y.A., Adelson, E.H.: Representing Moving Images With Layers. IEEE Trans. on Image Processing 3(5), 625–638 (1994)CrossRefGoogle Scholar
  20. 20.
    White, P.R., Collis, W.B., Robinson, S., Kokaram, A.C.: Inference Matting. In: CVMP 2005. Proc. of Conference on Visual Media Production, pp. 168–172 (November 2005)Google Scholar
  21. 21.
    Besag, J.R.: On the statistical analysis of dirty pictures. Journal of the Royal Statistical Society B 48(3), 259–302 (1986)zbMATHMathSciNetGoogle Scholar
  22. 22.
    Winkler, S.: Digital Video Quality - Vision Models and Metrics. John Wiley and Sons, Chichester (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Vittoria Bruni
    • 1
  • Andrew Crawford
    • 1
    • 2
  • Anil Kokaram
    • 3
  • Domenico Vitulano
    • 1
  1. 1.Istituto per le Applicazioni del Calcolo “M.Picone” - C.N.R., Viale del Policlinico 137, 00161 RomeItaly
  2. 2.Dip. di Modelli e Metodi Matematici per le Scienze Applicate, Universitá di Roma “La Sapienza”, Via A. Scarpa 16, 00161 RomeItaly
  3. 3.Electronic and Electrical Engineering Department, University of Dublin, Trinity CollegeIreland

Personalised recommendations