A Variational Bayes Approach to Image Segmentation

  • Giuseppe Boccignone
  • Mario Ferraro
  • Paolo Napoletano
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4729)


In this note we will discuss how image segmentation can be handled by using Bayesian learning and inference. In particular variational techniques relying on free energy minimization will be introduced. It will be shown how to embed a spatial diffusion process on segmentation labels within the Variational Bayes learning procedure so to enforce spatial constraints among labels.


Image Segmentation Gaussian Mixture Model Hide Variable Hide State Free Energy Minimization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Helmholtz, H.: Physiological Optics: The Perception of Vision, Optical Society of America, Rochester, NY, vol. III (1925)Google Scholar
  2. 2.
    Kording, K., Wolpert, D.: Bayesian decision theory in sensorimotor control. Trends in Cognitive Sciences 10(7) (July 2006)Google Scholar
  3. 3.
    Chater, N., Tenenbaum, J., Yuille, A.: Probabilistic models of cognition: Conceptual foundations. Trends in Cognitive Sciences 10(7), 287–291 (2006)CrossRefGoogle Scholar
  4. 4.
    Frey, B., Jojic, N.: A comparison of algorithms for inference and learning in probabilistic graphical models. IEEE Trans. on Pattern Analysis and Machine Intelligence 27, 1392–1416 (2005)CrossRefGoogle Scholar
  5. 5.
    MacKay, D.J.C.: Information Theory, Inference & Learning Algorithms. Cambridge University Press, Cambridge, UK (2002)Google Scholar
  6. 6.
    Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, Heidelberg (2006)zbMATHGoogle Scholar
  7. 7.
    Lucchese, L., Mitra, S.K.: Color image segmentation: A state-of-the-art survey. In: INSA-A. Proc. Indian National Science Academy, vol. 67, pp. 207–221 (March 2001)Google Scholar
  8. 8.
    Nasios, N., Bors, A.G.: Variational learning for gaussian mixture models. IEEE Trans. on System, Man, and Cybernetics-B 36(4), 849–862 (2006)CrossRefGoogle Scholar
  9. 9.
    Forsyth, D., Ponce, J.: Computer Vision: A Modern Approach. Prentice Hall International, Englewood Cliffs (2002)Google Scholar
  10. 10.
    Zhang, Y., Brady, M., Smith, S.: Segmentation of Brain MR Images Through a Hidden Markov Random Field Model and the Expectation-Maximization Algorithm. IEEE Trans. on Medical Imaging 20, 45–57 (2001)CrossRefGoogle Scholar
  11. 11.
    Gopal, S.S., Hebert, T.: Bayesian pixel classification using spatially variant finite mixtures and the Generalized EM algorithm. IEEE Trans. on Image Processing 7, 1014–1028 (1998)CrossRefGoogle Scholar
  12. 12.
    Weickert, J.: Applications of nonlinear diffusion in image processing and computer vision. Acta Math. Univ. Comenianae 70, 33–50 (2001)zbMATHMathSciNetGoogle Scholar
  13. 13.
    Penny, W.: Variational bayes for d-dimensional gaussian mixture models. Technical report, Wellcome Department of Cognitive Neurology, University College, London, UK (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Giuseppe Boccignone
    • 1
  • Mario Ferraro
    • 2
  • Paolo Napoletano
    • 1
  1. 1.Natural Computation Lab, DIIIE - Universitá di Salerno, via Ponte Don Melillo, 1 Fisciano (SA)Italy
  2. 2.DFS - Universitá di Torino, via Pietro Giuria 1, TorinoItaly

Personalised recommendations