Advertisement

Incremental Subspace Learning for Cognitive Visual Processes

  • Bogdan Raducanu
  • Jordi Vitrià
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4729)

Abstract

In real life, visual learning is supposed to be a continuous process. Humans have an innate facility to recognize objects even under less-than-ideal conditions and to build robust representations of them. These representations can be altered with the arrival of new information and thus the model of the world is continuously updated. Inspired by the biological paradigm, we propose in this paper an incremental subspace representation for cognitive vision processes. The proposed approach has been applied to the problem of face recognition. The experiments performed on a custom database show that at the end of incremental learning process the recognition performance achieved converges towards the result obtained using an off-line learning strategy.

Keywords

Face Recognition Linear Discriminant Analysis Face Image Incremental Learning Scatter Matrix 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Artač, M., Jogan, M., Leonardis, A.: Incremental PCA for on-line visual learning and recognition. In: Proc. of 16th Intl. Conf. Pattern Recognition, Québec, Canada, vol. 3, pp. 781–784 (2002)Google Scholar
  2. 2.
    Brooks, R.A.: Intelligence without Reason. In: IJCAI. Proc. of International Joint Conference on Artificial Intelligence, Sydney, Australia, pp. 569–595 (1991)Google Scholar
  3. 3.
    Chandrasekaran, S., Manjumath, B.S., Wang, Y.F., Winkler, J., Zhang, H.: An eigenspace update algorithm for image analysis. Graphical Models Image Processing 59(5), 321–332 (1997)CrossRefGoogle Scholar
  4. 4.
    Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, 2nd edn. John Wiley and Sons, New York, USA (2001)zbMATHGoogle Scholar
  5. 5.
    Fischler, M.A., Elschlager, R.A.: The Representation and Matching of Pictorial Structures. IEEE Transactions on Computers COM-22, 67–92 (1973)CrossRefGoogle Scholar
  6. 6.
    Fukunaga, K.: Introduction to Statistical Pattern Recognition, 2nd edn. Academic Press, Boston, USA (1990)zbMATHGoogle Scholar
  7. 7.
    de Gelder, B., Rouw, R.: Beyond Localisation: A Dynamical Dual Route Account of Face Recognition. Acta Psychologica 107, 183–207 (2001)CrossRefGoogle Scholar
  8. 8.
    Grow, G.O.: A Cognitive Model of Learning. Part of the paper: Serving the Strategic Reader: Cognitive Reading Theory and Its Implications for the Teaching of Writing, Original paper available as Eric Documentation Reproduction Service No. ED 406 644 (1996), available on-line at: http://www.longleaf.net/ggrow
  9. 9.
    Hall, P., Marshall, D., Martin, R.: Incremental Eigenanalysis for Classification. In: Proc. of British Machine Vision Conference, Southampton, UK, vol. 1, pp. 286–295 (1998)Google Scholar
  10. 10.
    Martinez, A.M., Kak, A.C.: PCA versus LDA. IEEE Trans. on Pattern Analysis and Machine Intelligence 23(2), 228–233 (2001)CrossRefGoogle Scholar
  11. 11.
    Masip, D., Kuncheva, L.I., Vitrià, J.: An Ensemble-based Method for Linear Feature Extraction for two-class problems. Patterns Analysis and Applications 8, 227–237 (2005)CrossRefGoogle Scholar
  12. 12.
    Pang, S., Ozawa, S., Kasabov, N.: Chunk Incremental LDA Computing on Data Streams. In: Wang, J., Liao, X.-F., Yi, Z. (eds.) ISNN 2005. LNCS, vol. 3497, pp. 51–56. Springer, Heidelberg (2005)Google Scholar
  13. 13.
    Skočaj, D., Uray, M., Leonardis, A., Bischof, H.: Why to Combine Reconstructive and Discriminative Information for Incremental Subspace Learning. In: Chum, et al. (eds.) Proc. of Computer Vision Winter Workshop, Telč, Czech Republic, pp. N/A (2006)Google Scholar
  14. 14.
    Viola, P., Jones, M.J.: Robust Real-Time Face Detection. International Journal of Computer Vision 57, 137–154 (2004)CrossRefGoogle Scholar
  15. 15.
    Weng, J., Zhang, Y., Hwang, W.-S.: Candid covariance-free incremental principal component analysis. IEEE Trans. on Pattern Analysis and Machine Intelligence 25(8), 1034–1040 (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Bogdan Raducanu
    • 1
  • Jordi Vitrià
    • 1
    • 2
  1. 1.Computer Vision Center, Building “O” - Campus UAB 
  2. 2.Computer Science Dept., Autonomous University of Barcelona (UAB), 08193 Bellaterra, BarcelonaSpain

Personalised recommendations