Advertisement

Diffuse Nerve Net of Hydra Revealed by NADPH-Diaphorase Histochemical Labeling

  • Luigia Cristino
  • Vittorio Guglielmotti
  • Carlo Musio
  • Silvia Santillo
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4729)

Abstract

The processing of the information coming from the external environment, including the interactions between molecular and cellular key-players involved in, is perhaps the “hard problem” in the cybernetic approach to the nervous system. As a whole, this information shapes the behavioral activity of an organism. The problem is faced considering the information processing flow in action from the lower organisms’ nervous elements to the higher cognitive levels of man. The cnidarian Hydra is the first organism of the zoological scale in which a nervous system is encountered. It is composed by isolated nerve cells scattered throughout the animal body constituting a diffuse nerve net for the input-output activity. In this paper is reported, for the first time in Hydra nerve net, the histochemical indication of a NADPH-diaphorase (NADPH-d) activity as putative marker of nitric oxide synthase (NOS) activity. The identification and the tentative localization of nitric oxide (NO) in Hydra is discussed in the light of the emerging role that such a signaling molecule exerts in sensory (visual particularly) and motor neural systems.

Keywords

Nitric Oxide Nitric Oxide Body Column High Cognitive Level Isolate Nerve Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Katz, P.S.: Evolution and development of neural circuits in invertebrates. Curr. Opin. Neurobiol. 17, 59–64 (2007)CrossRefGoogle Scholar
  2. 2.
    Lentz, T.L.: The cell biology of hydra. John Wiley, New York (1966)Google Scholar
  3. 3.
    Steele, R.E.: Developmental signaling in Hydra. Dev. Biol. 248, 199–219 (2002)CrossRefGoogle Scholar
  4. 4.
    Mackie, G.O.: The elementary nervous system revisited. Amer. Zool. 30, 907–920 (1990)Google Scholar
  5. 5.
    Grimmelikhuijzen, C., et al.: Neuropeptides in cnidarians. Can. J. Zool. 80, 1690–1702 (2002)CrossRefGoogle Scholar
  6. 6.
    Hansen, G.N., Williamson, M., Grimmelikhuijzen, C.J.: A new case of neuropeptide coexpression (RGamide and LWamides) in Hydra, found by whole-mount, two-color double-labeling in situ hybridization. Cell Tissue Res. 308, 157–165 (2002)CrossRefGoogle Scholar
  7. 7.
    Kass-Simon, G., Pierobon, P.: Cnidarian chemical neurotransmission, an updated overview. Comp. Biochem. Physiol. A 146, 9–25 (2007)Google Scholar
  8. 8.
    Moncada, S., Palmer, R.M., Higgs, E.A.: Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol. Rev. 43, 109–142 (1991)Google Scholar
  9. 9.
    Palumbo, A.: Nitric oxide in marine invertebrates: a comparative perspective. Comp. Biochem. Physiol. A 142, 241–248 (2005)Google Scholar
  10. 10.
    Ott, S., Burrows, M., Elphick, M.E.: The neuroanatomy of nitric oxide-cGMP signaling in the locust: functional implications for sensory systems. Amer. Zool. 41, 321–331 (2001)CrossRefGoogle Scholar
  11. 11.
    Colasanti, M., Venturini, G., Merante, A., et al.: Nitric oxide involvement in Hydra vulgaris very primitive olfactorylike system. J. Neurosci. 17, 493–499 (1997)Google Scholar
  12. 12.
    Elofsson, R., Carlberg, M., Moroz, L., et al.: Is nitric oxide (NO) produced by invertebrate neurones? Neuroreport 4, 279–282 (1993)CrossRefGoogle Scholar
  13. 13.
    Salleo, A., Giovanni, M., Barra, P., Calabrese, L.: The discharge mechanism of acomitial nematocytes involves the release of nitric oxide. J. Exp. Biol. 199, 1261–1267 (1996)Google Scholar
  14. 14.
    Taddei-Ferretti, C., Musio, C.: The neural net of Hydra and the modulation of its periodic activity. In: Mira, J.M. (ed.) IWANN 1999. LNCS, vol. 1606, pp. 123–137. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  15. 15.
    Burnett, A.L., Diehl, N.A.: The nervous system of Hydra. I. Types, distribution and origin of nerve elements. J. Exp. Zool. 157, 217–226 (1964)CrossRefGoogle Scholar
  16. 16.
    Tardent, P., Weber, C.: A qualitative and quantitative inventory of nervous cells in Hydra. In: Mackie, G. (ed.) Coelenterate ecology & behaviour, pp. 501–512. Plenum, New York (1976)Google Scholar
  17. 17.
    Epp, L., Tardent, P.: The distribution of nerve cells in Hydra attenuata Pall. Wilhelm Roux’s Arch. 185, 185–193 (1978)CrossRefGoogle Scholar
  18. 18.
    Grimmelikhuijzen, C.J.P., Westfall, J.A.: The nervous systems of Cnidarians. In: Breidbach, O., Kutsch, W. (eds.) The nervous systems of invertebrates, pp. 7–24. Birkhäuser, Basel (1995)Google Scholar
  19. 19.
    Koizumi, O.: Developmental neurobiology of hydra. Can. J. Zool. 80, 1678–1689 (2002)CrossRefGoogle Scholar
  20. 20.
    Bode, H.R.: Continuous conversion of neuron phenotype in hydra. Trends Genetics 8, 279–284 (1992)Google Scholar
  21. 21.
    Passano, L.M., McCullough, C.B.: Pacemaker hierarchies controlling the behaviour of hydras. Nature 199, 1174–1175 (1963)CrossRefGoogle Scholar
  22. 22.
    Passano, L.M., McCullough, C.B.: The light response and the rhythmic potentials in Hydra. Proc. Natl. Acad. Sci. USA 48, 1376–1382 (1962)CrossRefGoogle Scholar
  23. 23.
    Musio, C.: Extraocular photosensitivity in invertebrates. In: Taddei-Ferretti, C. (ed.) Biophysics of Photoreception, pp. 245–262. World Scientific, Singapore (1997)Google Scholar
  24. 24.
    Martin, V.J.: Photoreceptors of cnidarians. Can. J. Zool. 80, 1703–1722 (2002)CrossRefGoogle Scholar
  25. 25.
    Taddei-Ferretti, C., Musio, C.: Photobehaviour of Hydra and correlated mechanisms: a case of extraocular photosensitivity. J. Photochem. Photobiol. B: Biol. 55, 88–101 (2000)CrossRefGoogle Scholar
  26. 26.
    Taddei-Ferretti, C., Musio, C., Santillo, S., Cotugno, A.: The photobiology of Hydra’s periodic activity. Hydrobiologia 530/531, 129–134 (2004)CrossRefGoogle Scholar
  27. 27.
    Musio, C., Santillo, S., Taddei-Ferretti, C., Robles, L.J., et al.: First identification and localization of a visual pigment in Hydra. J. Comp. Physiol. 187A, 79–81 (2001)CrossRefGoogle Scholar
  28. 28.
    Santillo, S., Orlando, P., De Petrocellis, L., Cristino, L., Guglielmotti, V., Musio, C.: Evolving visual pigments: Hints from the opsin-based proteins in a phylogenetically old eyeless invertebrate. BioSystems 86, 3–17 (2006)CrossRefGoogle Scholar
  29. 29.
    Palmer, R.M., Ferrige, A.G., Moncada, S.: Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 327, 524–526 (1987)CrossRefGoogle Scholar
  30. 30.
    Bredt, D.S., Snyder, S.H.: Nitric oxide, a novel neuronal messenger. Neuron 8, 3–11 (1992)CrossRefGoogle Scholar
  31. 31.
    Moroz, L.L., Winlow, W., Turner, R.W., et al.: Nitric oxide synthase-immunoreactive cells in the CNS and periphery of Lymnaea. Neuroreport 5, 1277–1280 (1994)Google Scholar
  32. 32.
    Hope, B.T., Michael, G.J., Knigge, K.M., Vincent, S.R.: Neuronal NADPH-diaphorase is a nitric oxide synthase. Proc. Natl Acad. Sci. USA 88, 2811–2814 (1991)CrossRefGoogle Scholar
  33. 33.
    Moroz, L.L.: Gaseous transmission across time and species. Am. Zool. 41, 304–320 (2001)CrossRefGoogle Scholar
  34. 34.
    Garthwaite, J., Boulton, C.L.: Nitric oxide signaling in the central nervous system. Annu. Rev. Physiol. 57, 683–706 (1995)CrossRefGoogle Scholar
  35. 35.
    Ninnemann, H., Maier, J.: Indications for the occurrence of nitric oxide synthases in fungi and plants and the involvement in photoconidiation of Neurospora crassa. Photochem. Photobiol. 64, 393–398 (1996)Google Scholar
  36. 36.
    Robertson, J.D., Bonaventura, J., Kohm, A., Hiscat, M.: Nitric oxide is necessary for visual learning in Octopus vulgaris. Proc. R. Soc. Lond., B Biol. Sci. 263, 1739–1743 (1996)CrossRefGoogle Scholar
  37. 37.
    Elphick, M.R., Kemenes, G., Staras, K., O’Shea, M.: Behavioural role for nitric oxide in chemosensory activation of feeding in a mollusc. J. Neurosci. 15, 7653–7664 (1995)Google Scholar
  38. 38.
    Gelperin, A.: Nitric oxide mediates network oscillations of olfactory interneurons in a terrestrial mollusc. Nature 369, 61–63 (1994)CrossRefGoogle Scholar
  39. 39.
    Bult, H., Boeckxstaens, G.E., Pelckmans, P.A., et al.: Nitric oxide as an inhibitory non-adrenergic non-cholinergic neurotransmitter. Nature 345, 346–347 (1990)CrossRefGoogle Scholar
  40. 40.
    Moroz, L.L., Gillette, R.: NADPH-d localization in the CNS and peripheral tissues of the predatory sea-slug Pleurobranchaea californica. J. Comp. Neurol. 367, 607–622 (1996)CrossRefGoogle Scholar
  41. 41.
    Cudeiro, J., Rivadulla, C.: Sight and insight - on the physiological role of nitric oxide in the visual system. Trends Neurosci. 22, 109–116 (1999)CrossRefGoogle Scholar
  42. 42.
    Kurenny, D.E., Moroz, L.L., Turner, R.W., et al.: Modulation of ion channels in rod photoreceptors by nitric oxide. Neuron 13, 315–324 (1994)CrossRefGoogle Scholar
  43. 43.
    Florenzano, F., Guglielmotti, V.: Selective NADPH-diaphorase histochemical labeling of Müller radial processes and photoreceptors in the earliest stages of retinal development in the tadpole. Neurosci. Lett. 292, 187–190 (2000)CrossRefGoogle Scholar
  44. 44.
    Gibbs, S.M.: Regulation of Drosophila visual system development by nitric oxide and cGMP. Amer. Zool. 41, 268–281 (2001)CrossRefGoogle Scholar
  45. 45.
    Golombek, D.A., Agostino, P.V., Plano, S.A., Ferreyra, G.A.: Signaling in the mammalian circadian clock: the NO/cGMP pathway. Neurochem. Internat. 45, 929–936 (2004)CrossRefGoogle Scholar
  46. 46.
    Kalina, M., Plapinger, R.E., Hoshino, Y., Seligman, A.M.: Nonosmiophilic tetrazolium salts that yield osmiophilic, lipophobic formazans for ultrastructural localization of dehydrogenase activity. J. Histochem. Cytochem. 20, 685–695 (1972)Google Scholar
  47. 47.
    Altman, F.P.: Tetrazolium salts and formazans. Prog. Histochem. Cytochem. 9, 1–56 (1976)MathSciNetGoogle Scholar
  48. 48.
    Morishita, F., Nitagai, Y., Furukawa, Y., Matsushima, O., Takahashi, T., et al.: Identification of a vasopressin-like immunoreactive substance in hydra. Peptides 24, 17–26 (2003)CrossRefGoogle Scholar
  49. 49.
    Sakaguchi, M., Mizusina, A., Kobayakawa, Y.: Structure, development, and maintenance of the nerve net of the body column in Hydra. J. Comp. Neurol. 373, 41–54 (1996)CrossRefGoogle Scholar
  50. 50.
    Moroz, L.L., Meech, R.W., Sweedler, J.V., Mackie, G.O.: Nitric oxide regulates swimming in the jellyfish Aglantha digitale. J. Comp. Neurol. 471, 26–36 (2004)CrossRefGoogle Scholar
  51. 51.
    Anctil, M., Poulain, I., Pelletier, C.: NO modulates peristaltic muscle activity associated with fluid circulation in the sea pansy Renilla koellikeri. J. Exp. Biol. 208, 2005–2017 (2005)CrossRefGoogle Scholar
  52. 52.
    Cristino, L., Pica, A., Della Corte, F., Bentivoglio, M.: Plastic changes and nitric oxide synthase induction in neurons which innervate the regenerated tail of the lizard Gekko gecko: I. The response of spinal motoneurons to tail amputation and regeneration. J. Comp. Neurol. 417, 60–72 (2000)CrossRefGoogle Scholar
  53. 53.
    Cristino, L., Florenzano, F., Bentivoglio, M., Guglielmotti, V.: Nitric oxide synthase expression and cell changes in dorsal root ganglia and spinal dorsal horn of developing and adult Rana esculenta indicate a role of nitric oxide in limb metamorphosis. J. Comp. Neurol. 472, 423–436 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Luigia Cristino
    • 1
  • Vittorio Guglielmotti
    • 1
  • Carlo Musio
    • 1
  • Silvia Santillo
    • 1
  1. 1.Istituto di Cibernetica “Eduardo Caianiello” del CNR, Via Campi Flegrei 34, I-80078 Pozzuoli (Napoli)Italy

Personalised recommendations