Advertisement

A Self-organizing Approach to Detection of Moving Patterns for Real-Time Applications

  • Lucia Maddalena
  • Alfredo Petrosino
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4729)

Abstract

Detection of moving objects in video streams is the first relevant step of information extraction in many computer vision applications. Aside from the intrinsic usefulness of being able to segment video streams into moving and background components, detecting moving objects provides a focus of attention for recognition, classification, and activity analysis, making these later steps more efficient. We propose an approach based on self organization through artificial neural networks, widely applied in human image processing systems and more generally in cognitive science. The proposed model allows to capture structural background variation due to periodic-like motion over a long period of time under limited memory. Our method can handle scenes containing moving backgrounds or illumination variations, and it achieves robust detection for different types of videos taken with stationary cameras. We compared our method with other modeling techniques. Experimental results, both in terms of detection accuracy and in terms of processing speed, are presented for color video sequences which represent typical situations critical for video surveillance systems.

Keywords

visual surveillance motion detection self organization neural network 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Backer, G., Mertsching, B., Bollmann, M.: Data- and Model-Driven Gaze Control for an Active-Vision System. IEEE Trans. on PAMI 23(12), 1415–1429 (2001)Google Scholar
  2. 2.
    Barron, J.L., Fleet, D.J., Beauchemin, S.S.: Performance of Optical Flow Techniques. IJCV 12(1), 42–77 (1994)CrossRefGoogle Scholar
  3. 3.
    Cantoni, V., Marinaro, M., Petrosino, A. (eds.): Visual Attention Mechanisms. Kluwer Academic/Plenum Publishers, New York (2002)Google Scholar
  4. 4.
    CAVIAR Project: IST 2001 37540, http://homepages.inf.ed.ac.uk/rbf/CAVIAR/
  5. 5.
    Collins, R.T., Lipton, A.J., Kanade, T., Fujiyoshi, H., Duggins, D., Tsin, Y., Tolliver, D., Enomoto, N., Hasegawa, O., Burt, P., Wixson, L.: A System for Video Surveillance and Monitoring. The Robotics Institute, Carnegie Mellon University, CMU-RI-TR-00-12 (2000)Google Scholar
  6. 6.
    Cucchiara, R., Piccardi, M., Prati, A.: Detecting Moving Objects, Ghosts, and Shadows in Video Streams. IEEE Transactions on Pattern Analysis and Machine Intelligence 25(10), 1–6 (2003)CrossRefGoogle Scholar
  7. 7.
    Fisher, R.B.: Change Detection in Color Images, 1999 (unpublished), available at http://homepages.inf.ed.ac.uk/rbf/PAPERS/iccv99.pdf
  8. 8.
    Haritaoglu, I., Harwood, D., David, L.S.: W4: Real-time Surveillance of People and their Activities. IEEE Trans. on PAMI 22(8), 809–830 (2000)Google Scholar
  9. 9.
    Itti, L., Koch, C., Niebur, E.: A Model of Saliency-Based Visual Attention for Rapid Scene Analysis. IEEE Trans. on PAMI 20(11), 1254–1259 (1998)Google Scholar
  10. 10.
    Kim, K., Chalidabhongse, T.H., Harwood, D., Davis, L.S.: Real-time Foreground-background Segmentation using Codebook Model. Real-Time Imaging 11, 172–185 (2005)CrossRefGoogle Scholar
  11. 11.
    Kohonen, T.: Self-Organization and Associative Memory, 2nd edn. Springer, Heidelberg (1988)zbMATHGoogle Scholar
  12. 12.
    Maddalena, L., Petrosino, A.: A Self-Organizing Approach to Detection of Moving Patterns for Real-Time Applications, web page containing results for this article http://www.na.icar.cnr.it/~maddalena.l/HSV-SO/HSV-SO2007.html
  13. 13.
    Piccardi, M.: Background Subtraction Techniques: a Review. In: Proc. of IEEE Int. Conf. on Systems, Man and Cybernetics, The Hague, The Netherlands, IEEE Computer Society Press, Los Alamitos (2004)Google Scholar
  14. 14.
    Regazzoni, C., Ramesh, V., Foresti, G.: Special Issue on Video Communications, Processing, and Understanding for Third Generation Surveillance Systems. Proc. of the IEEE 89(10), 1355–1539 (2001)CrossRefGoogle Scholar
  15. 15.
    Rosin, P.L., Ellis, T.: Image Difference Threshold Strategies and Shadow Detection. In: Proc. British Machine Vision Conference, pp. 347–356 (1995)Google Scholar
  16. 16.
    Sarifuddin, M., Missaoui, R.: A New Perceptually Uniform Color Space with Associated Color Similarity Measure for Content-based Image and Video Retrieval. In: Multimedia Information Retrieval Workshop, Salvador Brazil (2005)Google Scholar
  17. 17.
    Smith, J.R., Chang, S.-F.: VisualSEEk: a Fully Automated Content-based Image Query System. In: ACM Multimedia, Boston, MA, ACM Press, New York (1996)Google Scholar
  18. 18.
    Toyama, K., Krumm, J., Brumitt, B., Meyers, B.: Wallflower: Principles and Practice of Background Maintenance. In: Proc. of the Seventh IEEE Conference on Computer Vision, vol. 1, pp. 255–261. IEEE Computer Society Press, Los Alamitos (1999)Google Scholar
  19. 19.
    Wren, C., Azarbayejani, A., Darrell, T., Pentland, A.: Pfinder: Real-Time Tracking of the Human Body. IEEE Trans. on PAMI 19(7), 780–785 (1997)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Lucia Maddalena
    • 1
  • Alfredo Petrosino
    • 2
  1. 1.ICAR - National Research Council, Via P. Castellino 111, 80131 NaplesItaly
  2. 2.DSA - University of Naples Parthenope, Via A. De Gasperi 5, 80133 NaplesItaly

Personalised recommendations