Independent Component Analysis of Layer Optical Flow and Its Application

  • Naoya Ohnishi
  • Atsushi Imiya
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4729)


In this paper, we present an algorithm for detecting obstacles using independent components of optical flow fields for visual navigation of a mobile robot. For the computation of optical flow, the pyramid transform of an image sequence is used for the analysis of global motion and local motion. We detect obstacles from optical flow fields at each layer in the pyramid. Therefore, our algorithm allows us to achieve both global perception and local perception for the robot vision. We show experimental results for both test image sequences and real image sequences captured by a mobile robot.


Mobile Robot Independent Component Analysis Optical Flow Independent Component Independent Component Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barron, J.L., Fleet, D.J., Beauchemin, S.S.: Performance of optical flow techniques. International Journal of Computer Vision 12, 43–77 (1994)CrossRefGoogle Scholar
  2. 2.
    Bouguet, J.-Y.: Pyramidal implementation of the Lucas Kanade feature tracker description of the algorithm. Intel Corporation, Microprocessor Research Labs, OpenCV Documents (1999)Google Scholar
  3. 3.
    Domenella, R.G., Plebe, A.: A neural model of human object recognition development. In: Proc. of 1st International Symposium on Brain, Vision and Artificial Intelligence, pp. 116–125 (2005)Google Scholar
  4. 4.
    Fermüller, C., Shulman, D., Aloimonos, Y.: The statistics of optical flow. Computer Vision and Image Understanding 82, 1–32 (2001)zbMATHCrossRefGoogle Scholar
  5. 5.
    van Hateren, J., van der Schaaf, A.: Independent component filters of natural images compared with simple cells in primary visual cortex. In: Proc. of the Royal Society of London. Series B, vol. 265, pp. 359–366 (1998)Google Scholar
  6. 6.
    Horn, B.K.P., Schunck, B.G.: Determining optical flow. Artificial Intelligence 17, 185–203 (1981)CrossRefGoogle Scholar
  7. 7.
    Hurri, J., Gavert, H., Sarela, J., Hyvarinen, A.: The FastICA package for MATLAB, website:
  8. 8.
    Hyvarinen, A., Oja, E.: Independent component analysis: algorithms and application. Neural Networks 13, 411–430 (2000)CrossRefGoogle Scholar
  9. 9.
    Hyvarinen, A., Hoyer, P.: Topographic independent component analysis. Neural Computation 13, 1525–1558 (2001)Google Scholar
  10. 10.
    Jabri, M.A., Park, K.-Y., Lee, S.-Y., Sejnowski, T.J.: Properties of independent components of self-motion optical flow. In: Proc. of IEEE International Symposium on Multiple-Valued Logic, pp. 355–362. IEEE Computer Society Press, Los Alamitos (2000)Google Scholar
  11. 11.
    Lucas, B., Kanade, T.: An iterative image registration technique with an application to stereo vision. In: Proc. of 7th IJCAI, pp. 674–679 (1981)Google Scholar
  12. 12.
    Mahzoun, M.R., Kim, J., Sawazaki, S., Okazaki, K., Tamura, S.: A scaled multigrid optical flow algorithm based on the least RMS error between real and estimated second images. Pattern Recognition 32, 657–670 (1999)CrossRefGoogle Scholar
  13. 13.
    Nagel, H.-H., Enkelmann, W.: An investigation of smoothness constraint for the estimation of displacement vector fields from image sequences. IEEE Transaction on PAMI 8, 565–593 (1986)Google Scholar
  14. 14.
    Ohnishi, N., Imiya, A.: Model-based plane-segmentation using optical flow and dominant plane. In: Proceedings of MIRAGE 2007. LNCS, vol. 4418, pp. 295–306. Springer, Heidelberg (2007)Google Scholar
  15. 15.
    Ohnishi, N., Imiya, A.: Dominant plane detection from optical flow for robot navigation. Pattern Recognition Letters 27, 1009–1021 (2006)CrossRefGoogle Scholar
  16. 16.
    Ohnishi, N., Imiya, A.: Dominant plane detection using optical flow and independent component analysis. In: Proc. of 1st International Symposium on Brain, Vision and Artificial Intelligence, pp. 478–496 (2005)Google Scholar
  17. 17.
    Park, K.-Y., Jabri, M., Lee, S.-Y., Sejnowski, T.J.: Independent components of optical flows have MSTd-like receptive fields. In: Proc. of the 2nd International Workshop on ICA and Blind Signal Separation, pp. 597–601 (2000)Google Scholar
  18. 18.
    Roth, S., Black, M.J.: On the spatial statistics of optical flow. In: Proc. of IEEE International Conference on Computer Vision, vol. 1, pp. 42–49 (2005)Google Scholar
  19. 19.
    Vaina, L.M., Beardsley, S.A., Rushton, S.K.: Optic flow and beyond. Kluwer Academic Publishers, Dordrecht (2004)Google Scholar
  20. 20.
    Zemel, R.S., Sejnowski, T.J.: A model for encoding multiple object motions and self-motion in area mst of primate visual cortex. Neuroscience 18, 531–547 (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Naoya Ohnishi
    • 1
  • Atsushi Imiya
    • 2
  1. 1.School of Science and Technology, Chiba University, Japan, Yayoi-cho 1-33, Inage-ku, Chiba, 263-8522Japan
  2. 2.Institute of Media and Information Technology, Chiba University, Japan, Yayoi-cho 1-33, Inage-ku, Chiba, 263-8522Japan

Personalised recommendations