Advertisement

Different Binding Strategies for the Different Stages of Visual Recognition

  • John K. Tsotsos
  • Antonio Jose Rodriguez-Sanchez
  • Albert L. Rothenstein
  • Eugene Simine
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4729)

Abstract

Many think attention needs an executive to allocate resources. Although the cortex exhibits substantial plasticity, dynamic allocation of neurons seems outside its capability. Suppose instead that the processing structure is fixed, but can be ‘tuned’ to task needs. The only resource that can be allocated is time. How can this fixed structure be used over periods of time longer than one feed-forward pass? Can the Selective Tuning model provide the answer? This short paper has one goal, that of explaining a single figure (Fig.1), that puts forward the proposal that by using multiple passes of the visual processing hierarchy, both bottom-up and top-down, and using task information to tune the processing prior to each pass, we can explain the different recognition behaviors that human vision exhibits. To accomplish this, four different kinds of binding processes are introduced and are tied directly to specific recognition tasks and their time course.

Keywords

Receptive Field Visual Recognition Stimulus Array Illusory Conjunction Recognition Behavior 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Becker, W.: Saccades. In: Carpenter, R.H.S. (ed.) Eye Movements, pp. 95–137. CRC Press, Boca Raton, USA (1991)Google Scholar
  2. Broadbent, D.: Perception and communication. Pergamon Press, NY (1958)Google Scholar
  3. Bullier, J.: Integrated Model of Visual Processing. Brain Research Reviews 36, 96–107 (2001)CrossRefGoogle Scholar
  4. Cutzu, F., Tsotsos, J.K.: The selective tuning model of visual attention: Testing the predictions arising from the inhibitory surround mechanism. Vision Research 43, 205–219 (2003)CrossRefGoogle Scholar
  5. Deutsch, J., Deutsch, D.: Attention: Some theoretical considerations. Psych. Review 70, 80–90 (1963)CrossRefGoogle Scholar
  6. Desimone, R., Duncan, J.: Neural mechanisms of selective visual attention. Ann. Rev. of Neuroscience 18, 193–222 (1995)CrossRefGoogle Scholar
  7. Duncan, J.: Selective attention and the organization of visual information. J. Exp. Psychol. Gen. 113(4), 501–517 (1984)CrossRefGoogle Scholar
  8. Duncan, J., Ward, J., Shapiro, K.: Direct measurement of attentional dwell time in human vision. Nature 369, 313–315 (1994)CrossRefGoogle Scholar
  9. Eriksen, C., James, J.S.: Visual attention within and around the field of focal attention: a zoom lens model. Percept. Psychophys. (4), 225–240 (1986)Google Scholar
  10. Evans, K., Treisman, A.: Perception of Objects in Natural Scenes: Is It Really Attention Free? J. Experimental Psychology: Human Perception and Performance 31(6), 1476–1492 (2005)CrossRefGoogle Scholar
  11. Grill-Spector, K., Kanwisher, N.: Visual recognition: As soon as you know it is there, you know what it is. Psychological Science 16, 152–160 (2005)CrossRefGoogle Scholar
  12. Gueye, L., Legalett, E., Viallet, F., Trouche, E., Farnarier, G.: Spatial Orienting of Attention: a study of reaction time during pointing movement. Neurophysiologie Clinique 32, 361–368 (2002)CrossRefGoogle Scholar
  13. Hopf, J.-M., Boehler, C.N., Luck, S.J., Tsotsos, J.K., Heinze, H.-J., Schoenfeld, M.A.: Direct neurophysiological evidence for spatial suppression surrounding the focus of attention in vision. PNAS 103(4), 1053–1058 (2006)CrossRefGoogle Scholar
  14. James, W.: The Principles of Psychology, H. Holt (1890)Google Scholar
  15. Lünenburger, L., Hoffman, K.-P.: Arm movement and gap as factors influencing the reaction time of the second saccade in a double-step task. European J. Neuroscience 17, 2481–2491 (2003)CrossRefGoogle Scholar
  16. Marr, D.: Vision: A Computational Investigation into the Human Representation and Processing of Visual Information. Henry Holt and Co., New York (1982)Google Scholar
  17. Treue, S., Martinez-Trujillo, J.: Feature-based attention influences motion processing gain in macaque visual cortex. Nature 399(6736), 575–579 (1999)CrossRefGoogle Scholar
  18. Mehta, A., Ulbert, I., Schroeder, C.: Intermodal selective attention in monkeys. I: distribution and timing of effects across visual areas. Cerebral Cortex 10(4), 343–358 (2000)CrossRefGoogle Scholar
  19. Milner, P.: A model for visual shape recognition. Psych. Rev. 81, 521–535 (1974)CrossRefGoogle Scholar
  20. Müller, H., Rabbitt, P.: Reflexive and Voluntary Orienting of Visual Attention: Time course of activation and resistance to interruption. J. Exp. Psychology: Human Perception and Performance 15, 315–330 (1989)CrossRefGoogle Scholar
  21. Norman, D.: Toward a theory of memory and attention. Psych. Review 75, 522–536 (1968)CrossRefGoogle Scholar
  22. O’Connor, D., Fukui, M., Pinsk, M., Kastner, S.: Attention modulates responses in the human lateral geniculate nucleus. Nature Neuroscience 5(11), 1203–1209 (2002)CrossRefGoogle Scholar
  23. Posner, M.I., Nissen, M., Ogden, W.: Attended and unattended processing modes: The role of set for spatial locations. In: Pick, Saltzmann (eds.) Modes of Perceiving and Processing Information, pp. 137–158. Erlbaum, Hillsdale, NJ (1978)Google Scholar
  24. Reynolds, J., Desimone, R.: The Role of Neural Mechanisms of Attention in Solving the Binding Problem. Neuron 24, 19–29 (1999)CrossRefGoogle Scholar
  25. Rizzolatti, G., Riggio, L., Dascola, I., Umilta, C.: Reorienting attention across the horizontal and vertical meridians - evidence in favor of a premotor theory of attention. Neuropsychologia 25, 31–40 (1987)CrossRefGoogle Scholar
  26. Rodriguez Sanchez, A., Simine, E., Tsotsos, J.K.: Feature Conjunctions in Serial Visual Search. In: Int. Conf. Artificial Neural Networks, September 10-14, 2006, Athens, Greece (2006)Google Scholar
  27. Roskies, A.: The Binding Problem - Introduction. Neuron 24, 7–9 (1999b)CrossRefGoogle Scholar
  28. Rothenstein, A., Tsotsos, J.K.: Selective Tuning: Feature Binding Through Selective Attention. In: Int. Conf. Artificial Neural Networks, September 10-14, 2006, Athens, Greece (2006)Google Scholar
  29. Schoenfeld, M., Tempelmann, C., Martinez, A., Hopf, J.-M., Sattler, C., Heinze, H.-J., Hillyard, S.: Dynamics of feature binding during object-selective attention. Proc. National Academy of Sciences 100(20), 11806–11811 (2003)CrossRefGoogle Scholar
  30. Shulman, G., Remington, R., McLean, J.: Moving Attention through Visual Space. J. Experimental Psychology 92, 428–431 (1979)Google Scholar
  31. Sutherland, S.: Feature Selection. Nature 392, 350 (1998)CrossRefGoogle Scholar
  32. Thorpe, S., Fize, D., Marlot, C.: Speed of processing in the human visual system. Nature 381, 520–522 (1996)CrossRefGoogle Scholar
  33. Tombu, M., Tsotsos, J.K.: Attending to orientation results in an inhibitory surround in orientation space. Perception & Psychophysics (to appear, 2007)Google Scholar
  34. Treisman, A.: The effect of irrelevant material on the efficiency of selective listening. American J. Psychology 77, 533–546 (1964)CrossRefGoogle Scholar
  35. Treisman, A.M., Gelade, G.: A feature-integration theory of attention. Cognitive Psychology 12(1), 97–136 (1980)CrossRefGoogle Scholar
  36. Treisman, A., Schmidt, H.: Illusory conjunctions in the perception of objects. Cognitive Psychology 14, 107–141 (1982)CrossRefGoogle Scholar
  37. Treisman, A.: Solutions to the Binding Problem: Progress through Controversy and Convergence. Neuron 24(1), 105–125 (1999)CrossRefGoogle Scholar
  38. Tsotsos, J.K.: A Complexity Level Analysis of Vision. Behavioral and Brain Sciences 13, 423–455 (1990)Google Scholar
  39. Tsotsos, J.K.: An Inhibitory Beam for Attentional Selection. In: Harris, L., Jenkin, M. (eds.) Spatial Vision in Humans and Robots, pp. 313–331. Cambridge University Press, Cambridge (1993)Google Scholar
  40. Tsotsos, J.K., Culhane, S., Wai, W., Lai, Y., Davis, N., Nuflo, F.: Modeling visual attention via selective tuning. Artificial Intelligence 78(1-2), 507–547 (1995)CrossRefGoogle Scholar
  41. Tsotsos, J.K., Liu, Y., Martinez-Trujillo, J., Pomplun, M., Simine, E., Zhou, K.: Attending to Motion. Computer Vision and Image Understanding 100(1-2), 3–40 (2005)CrossRefGoogle Scholar
  42. Wolfe, J.M.: Visual Search. In: Pashler, H. (ed.) Attention, pp. 13–74. Psychology Press Ltd., Hove, UK (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • John K. Tsotsos
    • 1
  • Antonio Jose Rodriguez-Sanchez
    • 1
  • Albert L. Rothenstein
    • 1
  • Eugene Simine
    • 1
  1. 1.Dept. of Computer Science, Engineering, Centre for Vision Research, York University, Toronto, OntarioCanada

Personalised recommendations