Temporal Characteristics of Artificial Retina Based on Bacteriorhodopsin and Its Variants

  • Teemu Tukiainen
  • Lasse Lensu
  • Jussi Parkkinen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4729)


Bacteriorhodopsin is the light-sensitive protein found in the archaean Halobacterium salinarum. Because of its versatile properties and possibilities to modify its characteristics, it has been proposed for a wide range of technical applications including the artificial retina. Here, a simulation model and tool for studying the characteristics of artifical retina based on biomolecules is introduced. Three types of bacteriorhodopsin with different light absorption and relaxation characteristics are used in a case study. The results show that the simulator is a versatile tool to study the temporal characteristics of bacteriorhodopsin variants and to support the design of artificial sensors.


Temporal Characteristic Thermal Relaxation Spectral Energy Distribution Purple Membrane Photoelectric Response 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bickel-Sandkötter, S., Gärtner, W., Dane, M.: Conversion of energy in halobacteria: ATP synthesis and phototaxis. Archives of Microbiology 166, 1–11 (1996)CrossRefGoogle Scholar
  2. 2.
    Birge, R.: Protein-based optical computing and memories. Computer 25(11), 56–67 (1992)CrossRefGoogle Scholar
  3. 3.
    Birge, R., Gillespie, N., Izaguirre, E., Kusnetzow, A., Lawrence, A., Singh, D., Song, Q.W., Schmidt, E., Stuart, J., Seetharaman, S., Wise, K.: Biomolecular electronics: protein-based associative processors and volumetric memories. Journal of Physical Chemistry B 103, 10746–10766 (1999)CrossRefGoogle Scholar
  4. 4.
    Bräuchle, C., Hampp, N., Drabent, R.: Optical applications of bacteriorhodopsin and its mutated variants. Advanced Materials 3, 420–428 (1991)CrossRefGoogle Scholar
  5. 5.
    Bryl, K., Váró, G., Drabent, R.: The photocycle of bacteriorhodopsin immobilized in poly (vinyl alcohol) film. FEBS Letters 285(1), 66–70 (1991)CrossRefGoogle Scholar
  6. 6.
    Chen, Z., Birge, R.: Protein-based artificial retinas. TIBTECH 11, 292–300 (1993)Google Scholar
  7. 7.
    Chen, Z., Takei, H., Lewis, A.: Optical implementation of neural networks with wavelength-encoded bipolar weight using bacteriorhodopsin. In: Proceedings, International Joint Conference on Neural Networks, San Diego, California, vol. 2, pp. 803–807 (1990)Google Scholar
  8. 8.
    Druzhko, A., Chamorovsky, S.: The cycle of photochromic reactions of a bacteriorhodopsin analog with 4-keto-retinal. Biosystems 35(2-3), 133–136 (1995)CrossRefGoogle Scholar
  9. 9.
    Frydrych, M., Lensu, L., Parkkinen, S., Parkkinen, J., Jaaskelainen, T.: Photoelectric response of bacteriorhodopsin in thin PVA films and its model. In: De Gregorio, M., Di Maio, V., Frucci, M., Musio, C. (eds.) BVAI 2005. LNCS, vol. 3704, pp. 126–135. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  10. 10.
    Frydrych, M., Silfsten, P., Parkkinen, S., Parkkinen, J., Jaaskelainen, T.: Color sensitive retina based on bacteriorhodopsin. Biosystems 54(3), 131–140 (2000)CrossRefGoogle Scholar
  11. 11.
    Gergely, C., Zimányi, L., Váró, G.: Bacteriorhodopsin intermediate spectra determined over a wide pH range. Journal of Physical Chemistry B 101, 9390–9395 (1997)CrossRefGoogle Scholar
  12. 12.
    Hampp, N.: Bacteriorhodopsin as a photochromic retinal protein for optical memories. Chemical Reviews 100, 1755–1776 (2000)CrossRefGoogle Scholar
  13. 13.
    Jaaskelainen, T., Leppanen, V.-P., Parkkinen, S., Parkkinen, J., Khodonov, A.: The photochromic properties of 4-keto bacteriorhodopsin. Optical Materials 6, 339–345 (1996)CrossRefGoogle Scholar
  14. 14.
    Keszthelyi, L., Ormos, P.: Electric signals associated with the photocycle of bacteriorhodopsin. FEBS Letters 109(2), 189–193 (1980)CrossRefGoogle Scholar
  15. 15.
    Lensu, L.: Photoelectric properties of bacteriorhodopsin films for photosensing and information processing. Doctoral thesis, number 141 in Acta Universitatis Lappeenrantaensis, Lappeenranta University of Technology (2002)Google Scholar
  16. 16.
    Lensu, L., Frydrych, M., Parkkinen, J., Parkkinen, S., Jaaskelainen, T.: Photoelectric properties of bacteriorhodopsin analogs for color-sensitive optoelectronic devices. Optical Materials 27(1), 57–62 (2004)CrossRefGoogle Scholar
  17. 17.
    Lensu, L., Frydrych, M., Parkkinen, S., Jaaskelainen, T., Parkkinen, J.: Color-sensitive biosensors for imaging applications. In: Knopf, G.K., Bassi, A.S. (eds.) Smart Biosensor Technology. Optical Science and Engineering Series, ch.16, vol. 118, pp. 437–460. CRC Press, Boca Raton, FL, USA (2007)Google Scholar
  18. 18.
    Lensu, L., Parkkinen, J., Parkkinen, S., Frydrych, M., Jaaskelainen, T.: Photoelectrical properties of protein-based optoelectronic sensor. Optical Materials 21(4), 783–788 (2003)CrossRefGoogle Scholar
  19. 19.
    Lensu, L., Parkkinen, J., Parkkinen, S., Jaaskelainen, T.: Grabbing video sequences using protein based artificial retina. In: Proceedings of SPIE: Sensors and Camera Systems for Scientific, Industrial, and Digital Photography Applications III, San Jose, California, USA, January 21-23, 2002, vol. 4669, pp. 52–62 (2002)Google Scholar
  20. 20.
    Ludmann, K., Gergely, C., Dér, A., Váró, G.: Electrical signals during the bacteriorhodopsin photocycle, determined over a wide pH range. Biophysical Journal 75, 3120–3126 (1998)CrossRefGoogle Scholar
  21. 21.
    Oesterhelt, D., Stoeckenius, W.: Rhodopsin-like protein from the purple membrane of Halobacterium Halobium. Nature New Biol. 233(39), 149–152 (1971)Google Scholar
  22. 22.
    Rigaud, J.-L., Paternostre, M.-T., Bluzat, A.: Mechanisms of membrane protein insertion into liposomes during reconstution procedures involving the use of detergents. 2. incorporation of the light-driven proton pump bacteriorhodopsin. Biochemistry 27, 2677–2688 (1988)CrossRefGoogle Scholar
  23. 23.
    Tittor, J., Oesterhelt, D.: The quantum yield of bacteriorhodopsin. FEBS Letters 263(2), 269–273 (1990)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Teemu Tukiainen
    • 1
  • Lasse Lensu
    • 1
  • Jussi Parkkinen
    • 2
  1. 1.Dept. of Information Tech., Lappeenranta University of TechnologyFinland
  2. 2.Dept. of Computer Science, University of JoensuuFinland

Personalised recommendations