Skip to main content

Temporal Characteristics of Artificial Retina Based on Bacteriorhodopsin and Its Variants

  • Conference paper
Advances in Brain, Vision, and Artificial Intelligence (BVAI 2007)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4729))

Included in the following conference series:

Abstract

Bacteriorhodopsin is the light-sensitive protein found in the archaean Halobacterium salinarum. Because of its versatile properties and possibilities to modify its characteristics, it has been proposed for a wide range of technical applications including the artificial retina. Here, a simulation model and tool for studying the characteristics of artifical retina based on biomolecules is introduced. Three types of bacteriorhodopsin with different light absorption and relaxation characteristics are used in a case study. The results show that the simulator is a versatile tool to study the temporal characteristics of bacteriorhodopsin variants and to support the design of artificial sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bickel-Sandkötter, S., Gärtner, W., Dane, M.: Conversion of energy in halobacteria: ATP synthesis and phototaxis. Archives of Microbiology 166, 1–11 (1996)

    Article  Google Scholar 

  2. Birge, R.: Protein-based optical computing and memories. Computer 25(11), 56–67 (1992)

    Article  Google Scholar 

  3. Birge, R., Gillespie, N., Izaguirre, E., Kusnetzow, A., Lawrence, A., Singh, D., Song, Q.W., Schmidt, E., Stuart, J., Seetharaman, S., Wise, K.: Biomolecular electronics: protein-based associative processors and volumetric memories. Journal of Physical Chemistry B 103, 10746–10766 (1999)

    Article  Google Scholar 

  4. Bräuchle, C., Hampp, N., Drabent, R.: Optical applications of bacteriorhodopsin and its mutated variants. Advanced Materials 3, 420–428 (1991)

    Article  Google Scholar 

  5. Bryl, K., Váró, G., Drabent, R.: The photocycle of bacteriorhodopsin immobilized in poly (vinyl alcohol) film. FEBS Letters 285(1), 66–70 (1991)

    Article  Google Scholar 

  6. Chen, Z., Birge, R.: Protein-based artificial retinas. TIBTECH 11, 292–300 (1993)

    Google Scholar 

  7. Chen, Z., Takei, H., Lewis, A.: Optical implementation of neural networks with wavelength-encoded bipolar weight using bacteriorhodopsin. In: Proceedings, International Joint Conference on Neural Networks, San Diego, California, vol. 2, pp. 803–807 (1990)

    Google Scholar 

  8. Druzhko, A., Chamorovsky, S.: The cycle of photochromic reactions of a bacteriorhodopsin analog with 4-keto-retinal. Biosystems 35(2-3), 133–136 (1995)

    Article  Google Scholar 

  9. Frydrych, M., Lensu, L., Parkkinen, S., Parkkinen, J., Jaaskelainen, T.: Photoelectric response of bacteriorhodopsin in thin PVA films and its model. In: De Gregorio, M., Di Maio, V., Frucci, M., Musio, C. (eds.) BVAI 2005. LNCS, vol. 3704, pp. 126–135. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  10. Frydrych, M., Silfsten, P., Parkkinen, S., Parkkinen, J., Jaaskelainen, T.: Color sensitive retina based on bacteriorhodopsin. Biosystems 54(3), 131–140 (2000)

    Article  Google Scholar 

  11. Gergely, C., Zimányi, L., Váró, G.: Bacteriorhodopsin intermediate spectra determined over a wide pH range. Journal of Physical Chemistry B 101, 9390–9395 (1997)

    Article  Google Scholar 

  12. Hampp, N.: Bacteriorhodopsin as a photochromic retinal protein for optical memories. Chemical Reviews 100, 1755–1776 (2000)

    Article  Google Scholar 

  13. Jaaskelainen, T., Leppanen, V.-P., Parkkinen, S., Parkkinen, J., Khodonov, A.: The photochromic properties of 4-keto bacteriorhodopsin. Optical Materials 6, 339–345 (1996)

    Article  Google Scholar 

  14. Keszthelyi, L., Ormos, P.: Electric signals associated with the photocycle of bacteriorhodopsin. FEBS Letters 109(2), 189–193 (1980)

    Article  Google Scholar 

  15. Lensu, L.: Photoelectric properties of bacteriorhodopsin films for photosensing and information processing. Doctoral thesis, number 141 in Acta Universitatis Lappeenrantaensis, Lappeenranta University of Technology (2002)

    Google Scholar 

  16. Lensu, L., Frydrych, M., Parkkinen, J., Parkkinen, S., Jaaskelainen, T.: Photoelectric properties of bacteriorhodopsin analogs for color-sensitive optoelectronic devices. Optical Materials 27(1), 57–62 (2004)

    Article  Google Scholar 

  17. Lensu, L., Frydrych, M., Parkkinen, S., Jaaskelainen, T., Parkkinen, J.: Color-sensitive biosensors for imaging applications. In: Knopf, G.K., Bassi, A.S. (eds.) Smart Biosensor Technology. Optical Science and Engineering Series, ch.16, vol. 118, pp. 437–460. CRC Press, Boca Raton, FL, USA (2007)

    Google Scholar 

  18. Lensu, L., Parkkinen, J., Parkkinen, S., Frydrych, M., Jaaskelainen, T.: Photoelectrical properties of protein-based optoelectronic sensor. Optical Materials 21(4), 783–788 (2003)

    Article  Google Scholar 

  19. Lensu, L., Parkkinen, J., Parkkinen, S., Jaaskelainen, T.: Grabbing video sequences using protein based artificial retina. In: Proceedings of SPIE: Sensors and Camera Systems for Scientific, Industrial, and Digital Photography Applications III, San Jose, California, USA, January 21-23, 2002, vol. 4669, pp. 52–62 (2002)

    Google Scholar 

  20. Ludmann, K., Gergely, C., Dér, A., Váró, G.: Electrical signals during the bacteriorhodopsin photocycle, determined over a wide pH range. Biophysical Journal 75, 3120–3126 (1998)

    Article  Google Scholar 

  21. Oesterhelt, D., Stoeckenius, W.: Rhodopsin-like protein from the purple membrane of Halobacterium Halobium. Nature New Biol. 233(39), 149–152 (1971)

    Google Scholar 

  22. Rigaud, J.-L., Paternostre, M.-T., Bluzat, A.: Mechanisms of membrane protein insertion into liposomes during reconstution procedures involving the use of detergents. 2. incorporation of the light-driven proton pump bacteriorhodopsin. Biochemistry 27, 2677–2688 (1988)

    Article  Google Scholar 

  23. Tittor, J., Oesterhelt, D.: The quantum yield of bacteriorhodopsin. FEBS Letters 263(2), 269–273 (1990)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Francesco Mele Giuliana Ramella Silvia Santillo Francesco Ventriglia

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tukiainen, T., Lensu, L., Parkkinen, J. (2007). Temporal Characteristics of Artificial Retina Based on Bacteriorhodopsin and Its Variants. In: Mele, F., Ramella, G., Santillo, S., Ventriglia, F. (eds) Advances in Brain, Vision, and Artificial Intelligence. BVAI 2007. Lecture Notes in Computer Science, vol 4729. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75555-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-75555-5_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-75554-8

  • Online ISBN: 978-3-540-75555-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics