Skip to main content

Mining Bi-sets in Numerical Data

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 4747))

Abstract

Thanks to an important research effort the last few years, inductive queries on set patterns and complete solvers which can evaluate them on large 0/1 data sets have been proved extremely useful. However, for many application domains, the raw data is numerical (matrices of real numbers whose dimensions denote objects and properties). Therefore, using efficient 0/1 mining techniques needs for tedious Boolean property encoding phases. This is, e.g., the case, when considering microarray data mining and its impact for knowledge discovery in molecular biology. We consider the possibility to mine directly numerical data to extract collections of relevant bi-sets, i.e., couples of associated sets of objects and attributes which satisfy some user-defined constraints. Not only we propose a new pattern domain but also we introduce a complete solver for computing the so-called numerical bi-sets. Preliminary experimental validation is given.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Becquet, C., Blachon, S., Jeudy, B., Boulicaut, J.-F., Gandrillon, O.: Strong-association-rule mining for large-scale gene-expression data analysis: a case study on human sage data. Genome Biology, 12 (November 2002)

    Google Scholar 

  2. Bergmann, S., Ihmels, J., Barkai, N.: Iterative signature algorithm for the analysis of large-scale gene expression data. Physical Review 67 (March 2003)

    Google Scholar 

  3. Besson, J., Pensa, R., Robardet, C., Boulicaut, J.-F.: Constraint-based mining of fault-tolerant patterns from boolean data. In: Bonchi, F., Boulicaut, J.-F. (eds.) KDID 2005. LNCS, vol. 3933, pp. 55–71. Springer, Heidelberg (2006)

    Google Scholar 

  4. Besson, J., Robardet, C., Boulicaut, J.-F., Rome, S.: Constraint-based concept mining and its application to microarray data analysis. Intelligent Data Analysis 9(1), 59–82 (2005)

    Google Scholar 

  5. Bozdech, Z., Llinás, M., Pulliam, B., Wong, E., Zhu, J., DeRisi, J.: The transcriptome of the intraerythrocytic developmental cycle of plasmodium falciparum. PLoS Biology 1(1), 1–16 (2003)

    Article  Google Scholar 

  6. Calders, T., Goethals, B., Jaroszewicz, S.: Mining rank correlated sets of numerical attributes. In: Proceedings ACM SIGKDD 2006, Philadelphia, USA, August 2006, pp. 96–105 (2006)

    Google Scholar 

  7. Creighton, C., Hanash, S.: Mining gene expression databases for association rules. Bioinformatics 19(1), 79–86 (2002)

    Article  Google Scholar 

  8. Hartigan, J.: Direct clustering of data matrix. Journal of the American Statistical Association 67(337), 123–129 (1972)

    Article  Google Scholar 

  9. Liu, J., Wang, W.: Op-cluster: Clustering by tendency in high dimensional space. In: Proceedings IEEE ICDM’03, Melbourne, USA, December 2003, pp. 187–194 (2003)

    Google Scholar 

  10. Madeira, S.C., Oliveira, A.L.: Biclustering algorithms for biological data analysis: A survey. ACM/IEEE Trans. on computational biology and bioinformatics 1(1), 24–45 (2004)

    Article  Google Scholar 

  11. Pensa, R., Boulicaut, J.-F.: Boolean property encoding for local set pattern discovery: an application to gene expression data analysis. In: Morik, K., Boulicaut, J.-F., Siebes, A. (eds.) Local Pattern Detection. LNCS (LNAI), vol. 3539, pp. 114–134. Springer, Heidelberg (2005)

    Google Scholar 

  12. Pensa, R.G., Leschi, C., Besson, J., Boulicaut, J.-F.: Assessment of discretization techniques for relevant pattern discovery from gene expression data. In: Proceedings ACM BIOKDD 2004, Seattle, USA, August 2004, pp. 24–30 (2004)

    Google Scholar 

  13. Ruckert, U., Richter, L., Kramer, S.: Quantitative association rules based on half-spaces: An optimization approach. In: Proceedings IEEE ICDM 2004, November 2004, pp. 507–510, Brighton, UK (2004)

    Google Scholar 

  14. Steinbach, M., Tan, P.-N., Xiong, H., Kumar, V.: Generalizing the notion of support. In: Proceedings ACM SIGKDD 2004, Seatle, USA, pp. 689–694 (2004)

    Google Scholar 

  15. Wang, H., Wang, W., Yang, J., Yu, P.S.: Clustering by pattern similarity in large data sets. In: Proceedings ACM SIGMOD 2002, Madison, USA, June 2002, pp. 394–405 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Sašo Džeroski Jan Struyf

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Besson, J., Robardet, C., De Raedt, L., Boulicaut, JF. (2007). Mining Bi-sets in Numerical Data. In: Džeroski, S., Struyf, J. (eds) Knowledge Discovery in Inductive Databases. KDID 2006. Lecture Notes in Computer Science, vol 4747. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75549-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-75549-4_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-75548-7

  • Online ISBN: 978-3-540-75549-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics