Skip to main content

Dew Formation and Activity of Biological Soil Crusts

  • Chapter
Book cover Arid Dune Ecosystems

Part of the book series: Ecological Studies ((ECOLSTUD,volume 200))

Biological soil crusts are prominent in many drylands and can be found in diverse parts of the globe including the Atacama desert, Chile, the Namib desert, Namibia, the Succulent-Karoo desert, South Africa, and the Negev desert, Israel. Because precipitation can be negligible in deserts — the Atacama desert being almost rain-free — or restricted to infrequent rains during short rainfall seasons, atmospheric moisture in the form of dew and/or fog can be a major, regular supplier of water for cryptogams.

To study in situ microclimatic boundary conditions of dew formation and/or influence on biological crust activity in a hot desert, a variety of intensive field experiments were conducted by the authors in the Haluza sand dune region, North- Western Negev desert. Microclimatic parameters such as the radiative energy budget, specific humidity, or difference between air temperature and dewpoint are needed to determine the onset and termination of lichen photosynthetic activity.

In the present paper, the physiological activation of soil lichens was measured by chlorophyll fluorescence (as used by Schroeter et al. 1992; Leisner et al. 1997). For the biological sand crusts, general meteorological stations were established on a dune slope or along a transect, in addition to intensive field campaigns where a variety of meteorological sensors were operated in parallel with manual and automatic microlysimeter dew measurements of both physical and biological crusts. The purpose focused on acquiring detailed information on the dew formation and drying process and dew quantities that could condense overnight. Full details regarding the experiments and instrumentation may be found in Jacobs et al. (1999, 2000a), Veste et al. (2001), Heusinkveld et al. (2006) and Littmann and Veste (2006).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agam N, Berliner PR (2004) Diurnal water content changes in the bare soil of a coastal desert. J Hydrometeorol 5:922–933

    Article  Google Scholar 

  • Agam N, Berliner PR (2006) Dew formation and water vapor adsorption in semi-arid environments–A review. J Arid Environ 65:572–590

    Article  Google Scholar 

  • Armstrong S (1990) Fog, wind and heat: life in the Namib desert. New Scientist 127(1725):46–50

    Google Scholar 

  • Berkowicz SM, Heusinkveld BG, Jacobs AFG (2001) Dew in an arid ecosystem: ecological aspects and problems in dew measurement. In: Schemenauer RS, Puxbaum H (eds) Proc 2nd Int Conf Fog and Fog Collection, 15–20 July 2001, St. John’s, Newfoundland, Canada, pp 301–304

    Google Scholar 

  • Beysens D (1995) The formation of dew. Atmospheric Res 39:215–237

    Article  CAS  Google Scholar 

  • Bitan A, Rubin S (1991) Climatic atlas of Israel for physical and environmental planning and design. Ramot, Tel Aviv University, Tel Aviv

    Google Scholar 

  • Broza M (1979) Dew, fog and hygroscopic food as a source of water for desert arthropods. J Arid Environ 2:43–49

    Google Scholar 

  • Cereceda P, Osses P, Larrain H, Fari M, Lagos M, Pinto R, Schemenauer RS (2002) Advective, orographic and radiation fog in the Tarapaca region, Chile. Atmospheric Res 64:261–271

    Article  Google Scholar 

  • Degen A, Leeper A, Shachak M (1992) The effect of slope direction and population density on water influx in a desert snail, Trochoidea seetzenii. Funct Ecol 6:160–166

    Article  Google Scholar 

  • Evenari M, Shanan L, Tadmor N (1982) The Negev: the challenge of a desert, 2nd edn. Harvard University Press, Cambridge, MA

    Google Scholar 

  • Garratt JR, Segal M (1988) On the contribution of atmospheric moisture to dew formation. Boundary-Layer Meterol 45:209–236

    Article  Google Scholar 

  • Goldreich Y (2003) The climate of Israel: observation, research and application. Kluwer/Plenum, New York, Dordrecht, London

    Book  Google Scholar 

  • Heusinkveld BG, Berkowicz SM, Jacobs AFG, Holtslag AAM, Hillen WCAM (2006) An automated microlysimeter to study dew formation and evaporation in arid and semi-arid regions. J Hydrometeorol 7:825–832

    Article  Google Scholar 

  • Heusinkveld BG, Berkowicz SM, Jacobs AFG, Hillen WCAM, Holtslag AAM (2008) A remote optical wetness sensor using spectral reflectance spectroscopy. Agric Forest Meteorol (in press)

    Google Scholar 

  • Jacobs AFG, Heusinkveld BG, Berkowicz S (1999) Dew deposition and drying in a desert system: a simple simulation model. J Arid Environ 42:211–222

    Article  Google Scholar 

  • Jacobs AFG, Heusinkveld BG, Berkowicz S (2000a) Dew measurements along a longitudinal sand dune transect, Negev desert, Israel. Int J Biometeorol 43:184–190

    Article  PubMed  CAS  Google Scholar 

  • Jacobs AFG, Heusinkveld BG, Berkowicz S (2000b) Force restore technique for surface temperature and surface moisture in a dry desert system. Water Resources Res 36:1261–1268

    Article  Google Scholar 

  • Jacobs AFG, Heusinkveld BG, Berkowicz S (2002) A simple model for potential dew-fall in an arid region. Atmospheric Res 64:285–295

    Article  Google Scholar 

  • Kappen L, Lange OL, Schulze E-D, Evenari M, Buschbom U (1979) Ecophysiological investigations on lichens of the Negev desert. Flora 168:85–108

    Google Scholar 

  • Kidron GJ (1998) A simple weighing method for dew and fog measurements. Weather 53:428–433

    Article  Google Scholar 

  • Kidron GJ (1999) Altitude dependent dew and fog in the Negev Desert, Israel. Agric Forest Meteorol 96:1–8

    Article  Google Scholar 

  • Lange OL (2001) Photosynthesis of soil crust-biota as dependent on environmental factors. In: Belnap J, Lange OL (eds) Biological soil crusts: structure, function and management. Ecological Studies vol 150, Springer, Berlin Heidelberg New York, pp 217–240

    Chapter  Google Scholar 

  • Lange OL, Schulze E-D, Koch W (1970) Experimentell-ökologische Untersuchungen an Flechten der Negev-Wüste. III. CO2-Gaswechsel und Wassergehalt von Krusten- und Blattflechten am natürlichen Standort während der sommerlichen Trockenperiode. Flora 159:525–528

    Google Scholar 

  • Lange OL, Kidron GJ, Büdel B, Meyer A, Kilian E, Abeliovich A (1992) Taxonomic composition and photosynthetic characteristics of the biological crusts covering sand dunes in the western Negev. Funct Ecol 6:519–527

    Article  Google Scholar 

  • Lange OL, Büdel B, Meyer A, Kilian E (1993) Further evidence that activation of net photosynthesis by dry cyanobacterial lichens requires liquid water. Lichenologist 25:175–189

    Google Scholar 

  • Lange OL, Meyer A, Zellner H, Heber U (1994) Photosynthesis and water relations of lichen soil crusts: field measurements in the coastal fog zone of the Namib Desert. Funct Ecol 8:253–264

    Article  Google Scholar 

  • Lange OL, Reichenberger H, Meyer A (1995) High thallus water content and photosynthetic CO2 exchange of lichens. Laboratory experiments with soil crust species from local xerothermic steppe formations in Franconia, Germany. In: Daniels FJA, Schulz M, Peine J (eds) Flechten Follmann. Contributions to lichenology in honor of Gerhard Follmann. Geobotanical and Phytotaxonomical Study Group, Universität Köln, pp 139–153

    Google Scholar 

  • Lange OL, Belnap J, Reichenberger H, Meyer A (1997a) Photosynthesis of green algal soil crust lichens from arid lands in southern Utah, USA: role of water content on light and temperature responses of CO2 exchange. Flora 192:1–15

    Google Scholar 

  • Lange OL, Reichenberger H, Walz H (1997b) Continuous monitoring of CO2 exchange of lichens in the field: short-term enclosure with an automatically operating cuvette. Lichenologist 29:259–274

    Google Scholar 

  • Lange OL, Belnap J, Reichenberger H (1998) Photosynthesis of the cyanobacterial soil-crust lichen Collema tenax from arid lands in southern Utah, USA: role of water content on light and temperature responses of CO2 exchange. Funct Ecol 12:519–527

    Article  Google Scholar 

  • Lange OL, Green TGA, Melzer B, Meyer A, Zellner H (2006) Water relations and CO2 exchange of the terrestrial lichen Teloschistes capensis in the Namib fog desert: measurements during two seasons in the field and under controlled conditions. Flora 201(4):268–280

    Article  Google Scholar 

  • Leisner JMR, Green TG, Lange OL (1997) Photobiont activity of a temperate crustose lichen: long-term chlorophyll fluorescence and CO2 exchange measurements in the field. Symbiosis 23:165–182

    CAS  Google Scholar 

  • Littmann T, Veste M (2006) Determination of actual evapotranspiration and transpiration in desert sand dunes (Negev Desert) using different approaches. Forestry Stud China 8(1):1–9

    Article  Google Scholar 

  • Loris K, Jürgens N, Veste M (2004) Zonobiom III. Die Namib-Wüste im südwestlichen Afrika (Namibia, Südafrika, Angola). In: Walter H, Breckle S-W (eds) Ökologie der Erde, Band 2. Spezielle Ökologie der tropischen und subtropischen Zonen, 3. Aufl. Elsevier, Amsterdam, pp 441–513

    Google Scholar 

  • Martin CE, von Willert DJ (2000) Leaf epidermal hydathodes and the ecophysiological consequences of foliar water uptake in species of Crassula from the Namib Desert in Southern Africa. Plant Biol 2:229–242

    Article  Google Scholar 

  • Moffett MW (1985) An Indian ant’s novel method for obtaining water. Natl Geogr Res 1:146–149

    Google Scholar 

  • Monteith JL (1957) Dew. Q J R Meteorol Soc 83:322–341

    Article  Google Scholar 

  • Munne-Bosch S, Alegre L (1999) Role of dew on the recovery of water-stressed Melissa officinalis L. plants. J Plant Physiol 154:759–766

    Article  CAS  Google Scholar 

  • Munne-Bosch S, Nogues S, Alegre L (1999) Diurnal variations of photosynthesis and dew absorption by leaves in two evergreen shrubs growing in Mediterranean field conditions. New Phytol 144:109–119

    Article  Google Scholar 

  • Ninari N, Berliner PR (2002) The role of dew in the water and heat balance of bare Loess soil in the Negev Desert: quantifying the actual dew deposition on the soil surface. Atmospheric Res 64:325–336

    Article  Google Scholar 

  • Richards K (2004) Observation and simulation of dew in rural and urban environments. Progr Phys Geogr 28:76–94

    Article  Google Scholar 

  • Roedel W (1992) Physik unserer Umwelt, die Atmosphäre. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Schemenauer RS, Cereceda P (1994) A proposed standard fog collector for use in high-elevation regions. J Appl Meteorol 33:1313–1322

    Article  Google Scholar 

  • Schroeter B, Green TGA, Seppelt RD, Kappen L (1992) Monitoring photosynthetic activity of crustose lichens using a PAM-2000 fluorescence system. Oecologia 92:457–462

    Article  Google Scholar 

  • Steinberger Y, Loboda I, Garner W (1989) The influence of autumn dewfall on spatial and temporal distribution of nematodes in the desert ecosystem. J Arid Environ 16:177–183

    Google Scholar 

  • Veste M, Littmann T (2006) Dewfall and its geo-ecological implication for biological surface crusts in desert sand dunes (north-western Negev, Israel). J Arid Land Stud 16(3):139–147

    Google Scholar 

  • Veste M, Littmann T, Friedrich H, Breckle S-W (2001) Microclimatic boundary conditions for activity of soil lichen crusts in sand dunes of the north-western Negev desert, Israel. Flora 196:465–476

    Google Scholar 

  • von Rönsch H (1990) Tau und Reif in Harzgerode. Z Meteorol 40:197–204

    Google Scholar 

  • von Willert DJ, Eller BM, Werger MJA, Brinckmann E, Ihlenfeldt H-D (1992) Life strategies of succulents in deserts with special reference to the Namib desert. Cambridge University Press, New York

    Google Scholar 

  • Waisel Y (1958) Dew absorption by plants of arid zones. Bull Res Council Israel D6:180–186

    Google Scholar 

  • Zangvil A (1996) Six years of dew observations in the Negev Desert, Israel. J Arid Environ 32:361–371

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Veste, M., Heusinkveld, B.G., Berkowicz, S.M., Breckle, S.W., Littmann, T., Jacobs, A.F.G. (2008). Dew Formation and Activity of Biological Soil Crusts. In: Breckle, SW., Yair, A., Veste, M. (eds) Arid Dune Ecosystems. Ecological Studies, vol 200. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75498-5_21

Download citation

Publish with us

Policies and ethics