Reliable Scientific Service Compositions

  • Bruno Wassermann
  • Wolfgang Emmerich
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4652)


Distributed service oriented architectures (SOAs) are increasingly used by users, who are insufficiently skilled in the art of distributed system programming. A good example are computational scientists who build large-scale distributed systems using service-oriented Grid computing infrastructures. Computational scientists use these infrastructure to build scientific applications, which are composed from basic Web services into larger orchestrations using workflow languages, such as the Business Process Execution Language. For these users reliability of the infrastructure is of significant importance and that has to be provided in the presence of hardware or operational failures. The primitives available to achieve such reliability currently leave much to be desired by users who do not necessarily have a strong education in distributed system construction. We characterise scientific service compositions and the environment they operate in by introducing the notion of global scientific BPEL workflows. We outline the threats to the reliability of such workflows and discuss the limited support that available specifications and mechanisms provide to achieve reliability. Furthermore, we propose a line of research to address the identified issues by investigating autonomic mechanisms that assist computational scientists in building, executing and maintaining reliable workflows.


Service Composition Computational Scientist Human User Business Process Execution Language Soap Message 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Emmerich, W., Butchart, B., Chen, L., Wassermann, B., Price, S.L.: Grid Service Orchestration using the Business Process Execution Language (BPEL). J. Grid Comp. 3(3-4), 283–304 (2005)CrossRefGoogle Scholar
  2. 2.
    Wassermann, B., Emmerich, W., Butchart, B., Cameron, N., Chen, L., Patel, J.: Sedna: A BPEL-based environment for visual scientific workflow modelling. In: Taylor, I.J., Deelman, E., Gannon, D., Shields, M.S. (eds.) Workflows for eScience - Scientific Workflows for Grids, Springer, Heidelberg (2006)Google Scholar
  3. 3.
    Cardelli, L.: Wide Area Computation. In: Wiedermann, J., van Emde Boas, P., Nielsen, M. (eds.) ICALP 1999. LNCS, vol. 1644, pp. 10–24. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  4. 4.
    Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of distributed consensus with one faulty process. JACM 32(2), 374–382 (1985)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Renesse, R., Birman, K., Vogels, W.: Astrolabe: A robust and scalable technology for distributed system monitoring, management, and data mining. ACM Tran. Comp. Sys 21(2), 164–206 (2003)CrossRefGoogle Scholar
  6. 6.
    Lee, W., McGough, S., Newhouse, S., Darlington, J.: A standard based approach to job submission through web services. In: Cox, S. (ed.) Proc. of the UK e-Science All Hands Meeting, Nottingham. EPSRC, pp. 901–905 (2004), ISBN 1-904425-21-6Google Scholar
  7. 7.
    Barghouti, N.S., Kaiser, G.E.: Concurrency Control in Advanced Database Applications. ACM Computing Surveys 23(3), 269–317 (1991)CrossRefGoogle Scholar
  8. 8.
    Hagen, C., Alonso, G.: Exception handling in workflow management systems. IEEE TSE 26(10), 943–958 (2000)Google Scholar
  9. 9.
    Mehrotra, S., Rastogi, R., Silberschatz, A., Korth, H.: A transaction model for multidatabase systems. In: Proc. of the 12th Intl.Conference on Distributed Computing Systems, pp. 56–63. IEEE Computer Society Press, Los Alamitos (1992)CrossRefGoogle Scholar
  10. 10.
    Zhang, A., Nodine, M., Bhargava, B., Bukhres, O.: Ensuring relaxed atomicity for flexible transactions in multidatabase systems. In: Proc. of the 1994 ACM SIGMOD Intl. Conference on Management of Data, pp. 67–78. ACM Press, New York (1994)CrossRefGoogle Scholar
  11. 11.
    Butler, M., Ferreira, C., Ng, M.: Precise Modelling of Compensating Business Transactions and its Application to BPEL. Journal of Universal Computer Science 11(5), 712–743 (2005)Google Scholar
  12. 12.
    Greenfield, P., Fekete, A., Jang, J., Kuo, D.: Compensation is Not Enough [fault-handlng and compensation mechanism]. In: Proc. of the 7th IEEE Intl. Enterprise Distributed Object Computing Conference, Brisbane, Australia, pp. 232–239. IEEE Computer Society Press, Los Alamitos (2003)CrossRefGoogle Scholar
  13. 13.
    Evans, C., Chappell, D., Bunting, D., Tharakan, G., Shimamura, H., Durand, J., Mischkinsky, J., Nihei, K., Iwasa, K., Chapman, M., Shimamura, M., Kassem, N., Yamamoto, N., Kunisetty, S., Hashimoto, T., Rutt, T., Nomura, Y.: Web Services Reliability (WS-Reliability 1.0) (2003)Google Scholar
  14. 14.
    Ferris, C. (ed.): Web Services Reliable Messaging Protocol (WS-ReliableMessaging). BEA Systems. IBM, Microsoft Corporation, TIBCO Software (2005)Google Scholar
  15. 15.
    Birman, K., Renesse, R., Vogels, W.: Adding high availability and autonomic behavior to web services. In: Proc. of the 26th Intl. Conference on Software Engineering, Washington, DC, pp. 17–26. IEEE Computer Society Press, Los Alamitos (2004)CrossRefGoogle Scholar
  16. 16.
    Birman, K., Renesse, R., Vogels, W.: Navigating in the storm: Using Astrolabe to adaptively configure web services and their clients. Journal of Cluster Computing 9(2), 127–139 (2006)CrossRefGoogle Scholar
  17. 17.
    Vogels, W.: Tracking Service Availability in Long Running Business Activities. In: Gschwind, T., Aßmann, U., Nierstrasz, O. (eds.) SC 2005. LNCS, vol. 3628, pp. 395–408. Springer, Heidelberg (2005)Google Scholar
  18. 18.
    Kermarrec, A.-M., Rowstron, A., Shapiro, M., Druschel, P.: The icecube approach to the reconciliation of divergent replicas. In: Proc. of the 20th annual ACM Symposium on Principles of Distributed Computing, pp. 210–218. ACM Press, New York (2001)Google Scholar
  19. 19.
    Bausch, W.: OPERA-G: a microkernel for computational grids. PhD thesis, ETH Zürich (2004)Google Scholar
  20. 20.
    Anderson, S., Hartswood, M., Procter, R., Rouncefield, M., Slack, R., Soutter, J., Voss, A.: Making autonomic computing systems accountable: the problem of human computer interaction. In: Mařík, V., Štěpánková, O., Retschitzegger, W. (eds.) DEXA 2003. LNCS, vol. 2736, pp. 718–724. Springer, Heidelberg (2003)Google Scholar
  21. 21.
    Ibrahim, M.T., Telford, R., Dini, P., Lorenz, P., Vidovic, N., Anthony, R.: Self-adaptability and man-in-the-loop: A dilemma in autonomic computing systems. In: Proc. of the 15th Intl. Workshop on Database and Expert Systems Applications, Washington, DC, pp. 722–729. IEEE Computer Society Press, Los Alamitos (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Bruno Wassermann
    • 1
  • Wolfgang Emmerich
    • 1
  1. 1.University College London, Dept. of Computer Science, Software Systems Engineering Group, Gower Street, London, WC1E 6BTUK

Personalised recommendations