Skip to main content

Escherichia coli Biofilms

  • Chapter
Bacterial Biofilms

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 322))

Escherichia coli is a predominant species among facultative anaerobic bacteria of the gastrointestinal tract. Both its frequent community lifestyle and the availability of a wide array of genetic tools contributed to establish E. coli as a relevant model organism for the study of surface colonization. Several key factors, including different extracellular appendages, are implicated in E. coli surface colonization and their expression and activity are finely regulated, both in space and time, to ensure productive events leading to mature biofilm formation. This chapter will present known molecular mechanisms underlying biofilm development in both commensal and pathogenic E. coli.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aberg A, Shingler V, Balsalobre C (2006) (p) ppGpp regulates type 1 fimbriation of Escherichia coli by modulating the expression of the site-specific recombinase FimB. Mol Microbiol 60:1520–1533

    PubMed  Google Scholar 

  • Abraham JM, Freitag CS, Clements JR, Eisenstein BI (1985) An invertible element of DNA controls phase variation of type 1 fimbriae of Escherichia coli. Proc Natl Acad Sci U S A 82:5724–5727

    PubMed  CAS  Google Scholar 

  • Adams JL, McLean RJ (1999) Impact of rpoS deletion on Escherichia coli biofilms. Appl Environ Microbiol 65:4285–4287

    PubMed  CAS  Google Scholar 

  • Agladze K, Wang X, Romeo T (2005) Spatial periodicity of Escherichia coli K-12 biofilm microstructure initiates during a reversible, polar attachment phase of development and requires the polysaccharide adhesin PGA. J Bacteriol 187:8237–8246

    PubMed  CAS  Google Scholar 

  • Ahmer BM (2004) Cell-to-cell signalling in Escherichia coli and Salmonella enterica. Mol Microbiol 52:933–945

    PubMed  CAS  Google Scholar 

  • Aldea M, Hernandez-Chico C, de la Campa AG, Kushner SR, Vicente M (1988) Identification, cloning, and expression of bolA, an ftsZ-dependent morphogene of Escherichia coli. J Bacteriol 170:5169–5176

    PubMed  CAS  Google Scholar 

  • Amabile-Cuevas CF, Chicurel ME (1996) A possible role for plasmids in mediating the cell-cell proximity required for gene flux. J Theor Biol 181:237–243

    PubMed  CAS  Google Scholar 

  • Amikam D, Benziman M (1989) Cyclic diguanylic acid and cellulose synthesis in Agrobacterium tumefaciens. J Bacteriol 171:6649–6655

    PubMed  CAS  Google Scholar 

  • Amikam D, Galperin MY (2006) PilZ domain is part of the bacterial c-di-GMP binding protein. Bioinformatics 22:3–6

    PubMed  CAS  Google Scholar 

  • Anderson GG, Palermo JJ, Schilling JD, Roth R, Heuser J, Hultgren SJ (2003) Intracellular bacterial biofilm-like pods in urinary tract infections. Science 301:105–107

    PubMed  CAS  Google Scholar 

  • Balzer GJ, McLean RJ (2002) The stringent response genes relA and spoT are important for Escherichia coli biofilms under slow-growth conditions. Can J Microbiol 48:675–680

    PubMed  CAS  Google Scholar 

  • Barnhart MM, Lynem J, Chapman MR (2006) GlcNAc-6P levels modulate the expression of Curli fibers by Escherichia coli. J Bacteriol 188:5212–5219

    PubMed  CAS  Google Scholar 

  • Barrios AF, Zuo R, Ren D, Wood TK (2006) Hha, YbaJ, and OmpA regulate Escherichia coli K12 biofilm formation and conjugation plasmids abolish motility. Biotechnol Bioeng 93:188–200

    PubMed  CAS  Google Scholar 

  • Barth M, Marschall C, Muffler A, Fischer D, Hengge-Aronis R (1995) Role for the histone-like protein H-NS in growth phase-dependent and osmotic regulation of sigma S and many sigma S-dependent genes in Escherichia coli. J Bacteriol 177:3455–3464

    PubMed  CAS  Google Scholar 

  • Beloin C, Ghigo JM (2005) Finding gene-expression patterns in bacterial biofilms. Trends Microbiol 13:16–19

    PubMed  CAS  Google Scholar 

  • Beloin C, Michaelis K, Lindner K, Landini P, Hacker J, Ghigo JM, Dobrindt U (2006) The transcriptional antiterminator RfaH represses biofilm formation in Escherichia coli. J Bacteriol 188:1316–1331

    PubMed  CAS  Google Scholar 

  • Beloin C, Valle J, Latour-Lambert P, Faure P, Kzreminski M, Balestrino D, Haagensen JA, Molin S, Prensier G, Arbeille B, Ghigo JM (2004) Global impact of mature biofilm lifestyle on Escherichia coli K-12 gene expression. Mol Microbiol 51:659–674

    PubMed  CAS  Google Scholar 

  • Ben Nasr A, Olsen A, Sjobring U, Muller-Esterl W, Bjorck L (1996) Assembly of human contact phase proteins and release of bradykinin at the surface of curli-expressing Escherichia coli. Mol Microbiol 20:927–935

    PubMed  CAS  Google Scholar 

  • Bianco C, Imperlini E, Calogero R, Senatore B, Amoresano A, Carpentieri A, Pucci P, Defez R (2006) Indole-3-acetic acid improves Escherichia coli’s defences to stress. Arch Microbiol 185:373–382

    PubMed  CAS  Google Scholar 

  • Blomfield IC, Kulasekara DH, Eisenstein BI (1997) Integration host factor stimulates both FimB- and FimE-mediated site-specific DNA inversion that controls phase variation of type 1 fimbriae expression in Escherichia coli. Mol Microbiol 23:705–717

    PubMed  CAS  Google Scholar 

  • Blumer C, Kleefeld A, Lehnen D, Heintz M, Dobrindt U, Nagy G, Michaelis K, Emody L, Polen T, Rachel R, Wendisch VF, Unden G (2005) Regulation of type 1 fimbriae synthesis and biofilm formation by the transcriptional regulator LrhA of Escherichia coli. Microbiology 151:3287–3298

    PubMed  CAS  Google Scholar 

  • Bollinger RR, Everett ML, Palestrant D, Love SD, Lin SS, Parker W (2003) Human secretory immunoglobulin A may contribute to biofilm formation in the gut. Immunology 109:580–587

    PubMed  CAS  Google Scholar 

  • Bollinger RR, Everett ML, Wahl SD, Lee YH, Orndorff PE, Parker W (2006) Secretory IgA and mucin-mediated biofilm formation by environmental strains of Escherichia coli: role of type 1 pili. Mol Immunol 43:378–387

    PubMed  CAS  Google Scholar 

  • Branda SS, Vik S, Friedman L, Kolter R (2005) Biofilms: the matrix revisited. Trends Microbiol 13:20–26

    PubMed  CAS  Google Scholar 

  • Brombacher E, Baratto A, Dorel C, Landini P (2006) Gene expression regulation by the Curli activator CsgD protein: modulation of cellulose biosynthesis and control of negative determinants for microbial adhesion. J Bacteriol 188:2027–2037

    PubMed  CAS  Google Scholar 

  • Brombacher E, Dorel C, Zehnder AJ, Landini P (2003) The curli biosynthesis regulator CsgD co-ordinates the expression of both positive and negative determinants for biofilm formation in Escherichia coli. Microbiology 149:2847–2857

    PubMed  CAS  Google Scholar 

  • Bryan A, Roesch P, Davis L, Moritz R, Pellett S, Welch RA (2006) Regulation of type 1 fimbriae by unlinked FimB- and FimE-like recombinases in uropathogenic Escherichia coli strain CFT073. Infect Immun 74:1072–1083

    PubMed  CAS  Google Scholar 

  • Buckles EL, Bahrani-Mougeot FK, Molina A, Lockatell CV, Johnson DE, Drachenberg CB, Burland V, Blattner FR, Donnenberg MS (2004) Identification and characterization of a novel uropathogenic Escherichia coli-associated fimbrial gene cluster. Infect Immun 72:3890–3901

    PubMed  CAS  Google Scholar 

  • Colon-Gonzalez M, Mendez-Ortiz MM, Membrillo-Hernandez J (2004) Anaerobic growth does not support biofilm formation in Escherichia coli K-12. Res Microbiol 155:514–521

    PubMed  CAS  Google Scholar 

  • Cookson AL, Cooley WA, Woodward MJ (2002) The role of type 1 and curli fimbriae of Shiga toxin-producing Escherichia coli in adherence to abiotic surfaces. Int J Med Microbiol 292:195–205

    PubMed  CAS  Google Scholar 

  • Corona-Izquierdo FP, Membrillo-Hernandez J (2002) A mutation in rpoS enhances biofilm formation in Escherichia coli during exponential phase of growth. FEMS Microbiol Lett 211:105–110

    PubMed  CAS  Google Scholar 

  • Costerton JW, Cheng KJ, Geesey GG, Ladd TI, Nickel JC, Dasgupta M, Marrie TJ (1987) Bacterial biofilms in nature and disease. Annu Rev Microbiol 41:435–464

    PubMed  CAS  Google Scholar 

  • Costerton JW, Lewandowski Z, Caldwell DE, Korber DR, Lappin-Scott HM (1995) Microbial biofilms. Annu Rev Microbiol 49:711–745

    PubMed  CAS  Google Scholar 

  • Cucarella C, Solano C, Valle J, Amorena B, Lasa I, Penades JR (2001) Bap, a Staphylococcus aureus surface protein involved in biofilm formation. J Bacteriol 183:2888–2896

    PubMed  CAS  Google Scholar 

  • Czaja W, Krystynowicz A, Bielecki S, Brown RM Jr (2006) Microbial cellulose - the natural power to heal wounds. Biomaterials 27:145–151

    PubMed  CAS  Google Scholar 

  • Da Re S, Ghigo JM (2006) A CsgD-independent pathway for cellulose production and biofilm formation in Escherichia coli. J Bacteriol 188:3073–3087

    PubMed  CAS  Google Scholar 

  • Danese PN, Pratt LA, Dove SL, Kolter R (2000a) The outer membrane protein, antigen 43, mediates cell-to-cell interactions within Escherichia coli biofilms. Mol Microbiol 37:424–432

    PubMed  CAS  Google Scholar 

  • Danese PN, Pratt LA, Kolter R (2000b) Exopolysaccharide production is required for development of Escherichia coli K-12 biofilm architecture. J Bacteriol 182:3593–3596

    PubMed  CAS  Google Scholar 

  • De Wulf P, McGuire AM, Liu X, Lin EC (2002) Genome-wide profiling of promoter recognition by the two-component response regulator CpxR-P in Escherichia coli. J Biol Chem 277:26652–26661

    PubMed  CAS  Google Scholar 

  • Di Martino P, Merieau A, Phillips R, Orange N, Hulen C (2002) Isolation of an Escherichia coil strain mutant unable to form biofilm on polystyrene and to adhere to human pneumocyte cells: involvement of tryptophanase. Can J Microbiol 48:132–137

    PubMed  CAS  Google Scholar 

  • Di Martino PD, Fursy R, Bret L, Sundararaju B, Phillips RS (2003) Indole can act as an extracellular signal to regulate biofilm formation of Escherichia coli and other indole-producing bacteria. Can J Microbiol 49:443–449

    PubMed  CAS  Google Scholar 

  • Diderichsen B (1980)flu, a metastable gene controlling surface properties of Escherichia coli. J Bacteriol 141:858–867

    PubMed  CAS  Google Scholar 

  • Dionisio F, Matic I, Radman M, Rodrigues OR, Taddei F (2002) Plasmids spread very fast in heterogeneous bacterial communities. Genetics 162:1525–1532

    PubMed  CAS  Google Scholar 

  • Dobrindt U, Hentschel U, Kaper JB, Hacker J (2002) Genome plasticity in pathogenic and nonpathogenic enterobacteria. Curr Top Microbiol Immunol 264:157–175

    PubMed  CAS  Google Scholar 

  • Domka J, Lee J, Wood TK (2006) YliH (BssR) and YceP (BssS) regulate Escherichia coli K-12 biofilm formation by influencing cell signaling. Appl Environ Microbiol 72:2449–2459

    PubMed  CAS  Google Scholar 

  • Donlan RM (2002) Biofilms: microbial life on surfaces. Emerg Infect Dis 8:881–890

    PubMed  Google Scholar 

  • Dorel C, Lejeune P, Rodrigue A (2006) The Cpx system of Escherichia coli, a strategic signaling pathway for confronting adverse conditions and for settling biofilm communities? Res Microbiol 157:306–314

    PubMed  CAS  Google Scholar 

  • Dorel C, Vidal O, Prigent-Combaret C, Vallet I, Lejeune P (1999) Involvement of the Cpx signal transduction pathway of E. coli in biofilm formation. FEMS Microbiol Lett 178:169–175

    PubMed  CAS  Google Scholar 

  • Dorman CJ (2004) H-NS: a universal regulator for a dynamic genome. Nat Rev Microbiol 2:391–400

    PubMed  CAS  Google Scholar 

  • Dorman CJ, Bhriain NN (1992) Thermal regulation of fimA, the Escherichia coli gene coding for the type 1 fimbrial subunit protein. FEMS Microbiol Lett 78:125–130

    PubMed  CAS  Google Scholar 

  • Dorman CJ, Higgins CF (1987) Fimbrial phase variation in Escherichia coli: dependence on integration host factor and homologies with other site-specific recombinases. J Bacteriol 169:3840–3843

    PubMed  CAS  Google Scholar 

  • Dow JM, Crossman L, Findlay K, He YQ, Feng JX, Tang JL (2003) Biofilm dispersal in Xanthomonas campestris is controlled by cell-cell signaling and is required for full virulence to plants. Proc Natl Acad Sci U S A 100:10995–11000

    PubMed  CAS  Google Scholar 

  • Dudley EG, Abe C, Ghigo JM, Latour-Lambert P, Hormazabal JC, Nataro JP (2006) An IncI1 plasmid contributes to the adherence of the atypical enteroaggregative Escherichia coli strain C1096 to cultured cells and abiotic surfaces. Infect Immun 74:2102–2114

    PubMed  CAS  Google Scholar 

  • Duncan MJ, Mann EL, Cohen MS, Ofek I, Sharon N, Abraham SN (2005) The distinct binding specificities exhibited by enterobacterial type 1 fimbriae are determined by their fimbrial shafts. J Biol Chem 280:37707–37716

    PubMed  CAS  Google Scholar 

  • Dunne WM Jr (2002) Bacterial adhesion: seen any good biofilms lately? Clin Microbiol Rev 15:155–166

    PubMed  CAS  Google Scholar 

  • Economou A, Christie PJ, Fernandez RC, Palmer T, Plano GV, Pugsley AP (2006) Secretion by numbers: Protein traffic in prokaryotes. Mol Microbiol 62:308–319

    PubMed  CAS  Google Scholar 

  • Eisenstein BI, Sweet DS, Vaughn V, Friedman DI (1987) Integration host factor is required for the DNA inversion that controls phase variation in Escherichia coli. Proc Natl Acad Sci U S A 84:6506–6510

    PubMed  CAS  Google Scholar 

  • Ferrieres L, Clarke DJ (2003) The RcsC sensor kinase is required for normal biofilm formation in Escherichia coli K-12 and controls the expression of a regulon in response to growth on a solid surface. Mol Microbiol 50:1665–1682

    PubMed  CAS  Google Scholar 

  • Fletcher M (1988) Attachment of Pseudomonas fluorescens to glass and influence of electrolytes on bacterium-substratum separation distance. J Bacteriol 170:2027–2030

    PubMed  CAS  Google Scholar 

  • Francez-Charlot A, Laugel B, Van Gemert A, Dubarry N, Wiorowski F, Castanie-Cornet MP, Gutierrez C, Cam K (2003) RcsCDB His-Asp phosphorelay system negatively regulates the flhDC operon in Escherichia coli. Mol Microbiol 49:823–832

    PubMed  CAS  Google Scholar 

  • Fredericks CE, Shibata S, Aizawa S, Reimann SA, Wolfe AJ (2006) Acetyl phosphate-sensitive regulation of flagellar biogenesis and capsular biosynthesis depends on the Rcs phosphorelay. Mol Microbiol 61:734–747

    PubMed  CAS  Google Scholar 

  • Freire P, Vieira HL, Furtado AR, de Pedro MA, Arraiano CM (2006) Effect of the morphogene bolA on the permeability of the Escherichia coli outer membrane. FEMS Microbiol Lett 260:106–111

    PubMed  CAS  Google Scholar 

  • Frost LS, Ippen-Ihler K, Skurray RA (1994) Analysis of the sequence and gene products of the transfer region of the F sex factor. Microbiol Rev 58:162–210

    PubMed  CAS  Google Scholar 

  • Gally DL, Leathart J, Blomfield IC (1996) Interaction of FimB, FimE with the fim switch that controls the phase variation of type 1 fimbriae in Escherichia coli K-12. Mol Microbiol 21:725–738

    PubMed  CAS  Google Scholar 

  • Geesey GG (2001) Bacterial behavior at surfaces. Curr Opin Microbiol 4:296–300

    PubMed  CAS  Google Scholar 

  • Genevaux P, Bauda P, DuBow MS, Oudega B (1999) Identification of Tn10 insertions in the rfaG, rfaP, and galU genes involved in lipopolysaccharide core biosynthesis that affect Escherichia coli adhesion. Arch Microbiol 172:1–8

    PubMed  CAS  Google Scholar 

  • Genevaux P, Muller S, Bauda P (1996) A rapid screening procedure to identify mini-Tn10 insertion mutants of Escherichia coli K-12 with altered adhesion properties. FEMS Microbiol Lett 142:27–30

    PubMed  CAS  Google Scholar 

  • Gerstel U, Park C, Romling U (2003) Complex regulation of csgD promoter activity by global regulatory proteins. Mol Microbiol 49:639–654

    PubMed  CAS  Google Scholar 

  • Ghannoum M, O’Toole GA (eds) (2001) Microbial biofilms. ASM Press, Washington DC

    Google Scholar 

  • Ghigo JM (2001) Natural conjugative plasmids induce bacterial biofilm development. Nature 412:442–445

    PubMed  CAS  Google Scholar 

  • Goller C, Wang X, Itoh Y, Romeo T (2006) The cation-responsive protein NhaR of Escherichia coli activates pgaABCD transcription, required for production of the biofilm adhesin poly-beta-1, 6-N-acetyl-D-glucosamine. J Bacteriol 188:8022–8032

    PubMed  CAS  Google Scholar 

  • Gonzalez Barrios AF, Zuo R, Hashimoto Y, Yang L, Bentley WE, Wood TK (2006) Autoinducer 2 controls biofilm formation in Escherichia coli through a novel motility quorum-sensing regulator (MqsR, B3022). J Bacteriol 188:305–316

    PubMed  Google Scholar 

  • Goodman AL, Kulasekara B, Rietsch A, Boyd D, Smith RS, Lory S (2004) A signaling network reciprocally regulates genes associated with acute infection and chronic persistence in Pseudomonas aeruginosa. Dev Cell 7:745–754

    PubMed  CAS  Google Scholar 

  • Gotz F (2002)Staphylococcus and biofilms. Mol Microbiol 43:1367–1378

    PubMed  CAS  Google Scholar 

  • Haagmans W, van der Woude M (2000) Phase variation of Ag43 in Escherichia coli: dam-dependent methylation abrogates OxyR binding and OxyR-mediated repression of transcription. Mol Microbiol 35:877–887

    PubMed  CAS  Google Scholar 

  • Hancock V, Klemm P (2006) Global gene expression profiling of asymptomatic bacteriuria Escherichia coli during biofilm growth in human urine. Infect Immun 75:966–976

    PubMed  Google Scholar 

  • Hanna A, Berg M, Stout V, Razatos A (2003) Role of capsular colanic acid in adhesion of uropathogenic Escherichia coli. Appl Environ Microbiol 69:4474–4481

    PubMed  CAS  Google Scholar 

  • Harris SL, Elliott DA, Blake MC, Must LM, Messenger M, Orndorff PE (1990) Isolation and characterization of mutants with lesions affecting pellicle formation and erythrocyte agglutination by type 1 piliated Escherichia coli. J Bacteriol 172:6411–6418

    PubMed  CAS  Google Scholar 

  • Harshey RM, Toguchi A (1996) Spinning tails: homologies among bacterial flagellar systems. Trends Microbiol 4:226–231

    PubMed  CAS  Google Scholar 

  • Hasman H, Chakraborty T, Klemm P (1999) Antigen-43-mediated autoaggregation of Escherichia coli is blocked by fimbriation. J Bacteriol 181:4834–4841

    PubMed  CAS  Google Scholar 

  • Hausner M, Wuertz S (1999) High rates of conjugation in bacterial biofilms as determined by quantitative in situ analysis. Appl Environ Microbiol 65:3710–3713

    PubMed  CAS  Google Scholar 

  • Henderson IR, Meehan M, Owen P (1997a) Antigen 43, a phase-variable bipartite outer membrane protein, determines colony morphology and autoaggregation in Escherichia coli K-12. FEMS Microbiol Lett 149:115–120

    PubMed  CAS  Google Scholar 

  • Henderson IR, Meehan M, Owen P (1997b) A novel regulatory mechanism for a novel phase-variable outer membrane protein of Escherichia coli. Adv Exp Med Biol 412:349–355

    PubMed  CAS  Google Scholar 

  • Henderson IR, Navarro-Garcia F, Desvaux M, Fernandez RC, Ala’Aldeen D (2004) Type V protein secretion pathway: the autotransporter story. Microbiol Mol Biol Rev 68:692–744

    PubMed  CAS  Google Scholar 

  • Henderson IR, Navarro-Garcia F, Nataro JP (1998) The great escape: structure and function of the autotransporter proteins. Trends Microbiol 6:370–378

    PubMed  CAS  Google Scholar 

  • Henderson IR, Owen P, Nataro JP (1999) Molecular switches - the ON, OFF of bacterial phase variation. Mol Microbiol 33:919–932

    PubMed  CAS  Google Scholar 

  • Hengge-Aronis R (1996) Stationary-phase gene regulation. In: Neidhart FC, Curtiss III R, Ingraham JL, Lin ECC, Low KB, Magasanik B, Reznikoff WS, Riley M, Schaechter M, Umbarger HE (eds)Escherichia coli and Salmonella. Cellular and molecular biology, vol 1. ASM Press, Washington DC, pp 1497–1512

    Google Scholar 

  • Hengge-Aronis R (2002) Signal transduction and regulatory mechanisms involved in control of the sigma(S) (RpoS) subunit of RNA polymerase. Microbiol Mol Biol Rev 66:373–395

    PubMed  CAS  Google Scholar 

  • Herzberg M, Kaye IK, Peti W, Wood TK (2006) YdgG (TqsA) controls biofilm formation in Escherichia coli K-12 through autoinducer 2 transport. J Bacteriol 188:587–598

    PubMed  CAS  Google Scholar 

  • Holden NJ, Gally DL (2004) Switches, cross-talk and memory in Escherichia coli adherence. J Med Microbiol 53:585–593

    PubMed  CAS  Google Scholar 

  • Hommais F, Krin E, Laurent-Winter C, Soutourina O, Malpertuy A, Le Caer JP, Danchin A, Bertin P (2001) Large-scale monitoring of pleiotropic regulation of gene expression by the prokaryotic nucleoid-associated protein, H-NS. Mol Microbiol 40:20–36

    PubMed  CAS  Google Scholar 

  • Huang CT, Xu KD, McFeters GA, Stewart PS (1998) Spatial patterns of alkaline phosphatase expression within bacterial colonies and biofilms in response to phosphate starvation. Appl Environ Microbiol 64:1526–1531

    PubMed  CAS  Google Scholar 

  • Huang YH, Ferrieres L, Clarke DJ (2006) The role of the Rcs phosphorelay in Enterobacteriaceae. Res Microbiol 157:206–212

    PubMed  CAS  Google Scholar 

  • Irie Y, Mattoo S, Yuk MH (2004) The Bvg virulence control system regulates biofilm formation in Bordetella bronchiseptica. J Bacteriol 186:5692–5698

    PubMed  CAS  Google Scholar 

  • Itoh Y, Wang X, Hinnebusch BJ, Preston JF 3rd, Romeo T (2005) Depolymerization of beta-1, 6-N-acetyl-D-glucosamine disrupts the integrity of diverse bacterial biofilms. J Bacteriol 187:382–387

    PubMed  CAS  Google Scholar 

  • Jackson DW, Simecka JW, Romeo T (2002a) Catabolite repression of Escherichia coli biofilm formation. J Bacteriol 184:3406–3410

    PubMed  CAS  Google Scholar 

  • Jackson DW, Suzuki K, Oakford L, Simecka JW, Hart ME, Romeo T (2002b) Biofilm formation and dispersal under the influence of the global regulator CsrA of Escherichia coli. J Bacteriol 184:290–301

    PubMed  CAS  Google Scholar 

  • Jenal U, Malone J (2006) Mechanisms of cyclic-di-GMP signaling in bacteria. Annu Rev Genet 40:385–407

    PubMed  CAS  Google Scholar 

  • Jubelin G, Vianney A, Beloin C, Ghigo JM, Lazzaroni JC, Lejeune P, Dorel C (2005) CpxR/OmpR interplay regulates curli gene expression in response to osmolarity in Escherichia coli. J Bacteriol 187:2038–2049

    PubMed  CAS  Google Scholar 

  • Justice SS, Hung C, Theriot JA, Fletcher DA, Anderson GG, Footer MJ, Hultgren SJ (2004) Differentiation and developmental pathways of uropathogenic Escherichia coli in urinary tract pathogenesis. Proc Natl Acad Sci U S A 101:1333–1338

    PubMed  CAS  Google Scholar 

  • Kaper JB, Nataro JP, Mobley HL (2004) Pathogenic Escherichia coli. Nat Rev Microbiol 2:123–140

    PubMed  CAS  Google Scholar 

  • Kaplan JB, Velliyagounder K, Ragunath C, Rohde H, Mack D, Knobloch JK, Ramasubbu N (2004) Genes involved in the synthesis and degradation of matrix polysaccharide in Actinobacillus actinomycetemcomitans and Actinobacillus pleuropneumoniae biofilms. J Bacteriol 186:8213–8220

    PubMed  CAS  Google Scholar 

  • Kikuchi T, Mizunoe Y, Takade A, Naito S, Yoshida S (2005) Curli fibers are required for development of biofilm architecture in Escherichia coli K-12 and enhance bacterial adherence to human uroepithelial cells. Microbiol Immunol 49:875–884

    PubMed  CAS  Google Scholar 

  • Kirillina O, Fetherston JD, Bobrov AG, Abney J, Perry RD (2004) HmsP, a putative phosphodiesterase, and HmsT, a putative diguanylate cyclase, control Hms-dependent biofilm formation in Yersinia pestis. Mol Microbiol 54:75–88

    PubMed  CAS  Google Scholar 

  • Kjaergaard K, Schembri MA, Hasman H, Klemm P (2000a) Antigen 43 from Escherichia coli induces inter- and intraspecies cell aggregation and changes in colony morphology of Pseudomonas fluorescens. J Bacteriol 182:4789–4796

    PubMed  CAS  Google Scholar 

  • Kjaergaard K, Schembri MA, Ramos C, Molin S, Klemm P (2000b) Antigen 43 facilitates formation of multispecies biofilms. Environ Microbiol 2:695–702

    PubMed  CAS  Google Scholar 

  • Klemm P (1986) Two regulatory fim genes, fimB and fimE, control the phase variation of type 1 fimbriae in Escherichia coli. EMBO J 5:1389–1393

    PubMed  CAS  Google Scholar 

  • Klemm P, Vejborg RM, Sherlock O (2006) Self-associating autotransporters, SAATs: functional and structural similarities. Int J Med Microbiol 296:187–195

    PubMed  CAS  Google Scholar 

  • Ko M, Park C (2000) Two novel flagellar components and H-NS are involved in the motor function of Escherichia coli. J Mol Biol 303:371–382

    PubMed  CAS  Google Scholar 

  • Kuchma SL, Connolly JP, O’Toole GA (2005) A three-component regulatory system regulates biofilm maturation and type III secretion in Pseudomonas aeruginosa. J Bacteriol 187:1441–1454

    PubMed  CAS  Google Scholar 

  • Lacqua A, Wanner O, Colangelo T, Martinotti MG, Landini P (2006) Emergence of biofilm-forming subpopulations upon exposure of Escherichia coli to environmental bacteriophages. Appl Environ Microbiol 72:956–959

    PubMed  CAS  Google Scholar 

  • Landini P, Zehnder AJ (2002) The global regulatory hns gene negatively affects adhesion to solid surfaces by anaerobically grown Escherichia coli by modulating expression of flagellar genes and lipopolysaccharide production. J Bacteriol 184:1522–1529

    PubMed  CAS  Google Scholar 

  • Latasa C, Roux A, Toledo-Arana A, Ghigo JM, Gamazo C, Penades JR, Lasa I (2005) BapA, a large secreted protein required for biofilm formation and host colonization of Salmonella enterica serovar enteritidis. Mol Microbiol 58:1322–1339

    PubMed  CAS  Google Scholar 

  • Lebaron P, Bauda P, Lett MC, Duval-Iflah Y, Simonet P, Jacq E, Frank N, Roux B, Baleux B, Faurie G, Hubert JC, Normand P, Prieur D, Schmitt S, Block JC (1997) Recombinant plasmid mobilization between E. coli strains in seven sterile microcosms. Can J Microbiol 43:534–540

    PubMed  CAS  Google Scholar 

  • Lehnen D, Blumer C, Polen T, Wackwitz B, Wendisch VF, Unden G (2002) LrhA as a new transcriptional key regulator of flagella, motility and chemotaxis genes in Escherichia coli. Mol Microbiol 45:521–532

    PubMed  CAS  Google Scholar 

  • Licht TR, Christensen BB, Krogfelt KA, Molin S (1999) Plasmid transfer in the animal intestine and other dynamic bacterial populations: the role of community structure and environment. Microbiology 145:2615–2622

    PubMed  CAS  Google Scholar 

  • Mack D, Fischer W, Krokotsch A, Leopold K, Hartmann R, Egge H, Laufs R (1996) The intercellular adhesin involved in biofilm accumulation of Staphylococcus epidermidis is a linear beta-1, 6-linked glucosaminoglycan: purification and structural analysis. J Bacteriol 178:175–183

    PubMed  CAS  Google Scholar 

  • Maeda S, Ito M, Ando T, Ishimoto Y, Fujisawa Y, Takahashi H, Matsuda A, Sawamura A, Kato S (2006) Horizontal transfer of nonconjugative plasmids in a colony biofilm of Escherichia coli. FEMS Microbiol Lett 255:115–120

    PubMed  CAS  Google Scholar 

  • Maira-Litran T, Kropec A, Abeygunawardana C, Joyce J, Mark G 3rd, Goldmann DA, Pier GB (2002) Immunochemical properties of the staphylococcal poly-N-acetylglucosamine surface polysaccharide. Infect Immun 70:4433–4440

    PubMed  CAS  Google Scholar 

  • Majdalani N, Gottesman S (2005) The Rcs phosphorelay: a complex signal transduction system. Annu Rev Microbiol 59:379–405

    PubMed  CAS  Google Scholar 

  • Mayer R, Ross P, Weinhouse H, Amikam D, Volman G, Ohana P, Calhoon RD, Wong HC, Emerick AW, Benziman M (1991) Polypeptide composition of bacterial cyclic diguanylic acid-dependent cellulose synthase and the occurrence of immunologically crossreacting proteins in higher plants. Proc Natl Acad Sci U S A 88:5472–5476

    PubMed  CAS  Google Scholar 

  • Molin S, Tolker-Nielsen T (2003) Gene transfer occurs with enhanced efficiency in biofilms and induces enhanced stabilisation of the biofilm structure. Curr Opin Biotechnol 14:255–261

    PubMed  CAS  Google Scholar 

  • Moreira CG, Carneiro SM, Nataro JP, Trabulsi LR, Elias WP (2003) Role of type I fimbriae in the aggregative adhesion pattern of enteroaggregative Escherichia coli. FEMS Microbiol Lett 226:79–85

    PubMed  CAS  Google Scholar 

  • Nagy G, Dobrindt U, Schneider G, Khan AS, Hacker J, Emody L (2002) Loss of regulatory protein RfaH attenuates virulence of uropathogenic Escherichia coli. Infect Immun 70:4406–4413

    PubMed  CAS  Google Scholar 

  • Newton WA, Snell EE (1964) Catalytic properties of tryptophanase, a multifunctional pyridoxal phosphate enzyme. Proc Natl Acad Sci U S A 51:382–389

    PubMed  CAS  Google Scholar 

  • Olsen A, Jonsson A, Normark S (1989) Fibronectin binding mediated by a novel class of surface organelles on Escherichia coli. Nature 338:652–655

    PubMed  CAS  Google Scholar 

  • Olsen PB, Schembri MA, Gally DL, Klemm P (1998) Differential temperature modulation by H-NS of the fimB and fimE recombinase genes which control the orientation of the type 1 fimbrial phase switch. FEMS Microbiol Lett 162:17–23

    PubMed  CAS  Google Scholar 

  • Oomen CJ, van Ulsen P, van Gelder P, Feijen M, Tommassen J, Gros P (2004) Structure of the translocator domain of a bacterial autotransporter. EMBO J 23:1257–1266

    PubMed  CAS  Google Scholar 

  • Ophir T, Gutnick D (1994) A role for exopolysaccharides in the protection of microorganisms from desiccation. Appl Environ Microbiol 60:740–745

    PubMed  CAS  Google Scholar 

  • Orndorff PE, Devapali A, Palestrant S, Wyse A, Everett ML, Bollinger RR, Parker W (2004) Immunoglobulin-mediated agglutination of and biofilm formation by Escherichia coli K-12 require the type 1 pilus fiber. Infect Immun 72:1929–1938

    PubMed  CAS  Google Scholar 

  • Oshima T, Aiba H, Masuda Y, Kanaya S, Sugiura M, Wanner BL, Mori H, Mizuno T (2002) Transcriptome analysis of all two-component regulatory system mutants of Escherichia coli K-12. Mol Microbiol 46:281–291

    PubMed  CAS  Google Scholar 

  • Otto K, Hermansson M (2004) Inactivation of ompX causes increased interactions of type 1 fimbriated Escherichia coli with abiotic surfaces. J Bacteriol 186:226–234

    PubMed  CAS  Google Scholar 

  • Otto K, Norbeck J, Larsson T, Karlsson KA, Hermansson M (2001) Adhesion of type 1-fimbriated Escherichia coli to abiotic surfaces leads to altered composition of outer membrane proteins. J Bacteriol 183:2445–2453

    PubMed  CAS  Google Scholar 

  • Otto K, Silhavy TJ (2002) Surface sensing and adhesion of Escherichia coli controlled by the Cpx-signaling pathway. Proc Natl Acad Sci U S A 99:2287–2292

    PubMed  CAS  Google Scholar 

  • Owen P, Meehan M, de Loughry-Doherty H, Henderson I (1996) Phase-variable outer membrane proteins in Escherichia coli. FEMS Immunol Med Microbiol 16:63–76

    PubMed  CAS  Google Scholar 

  • Perna NT, Plunkett G 3rd, Burland V, Mau B, Glasner JD, Rose DJ, Mayhew GF, Evans PS, Gregor J, Kirkpatrick HA, Posfai G, Hackett J, Klink S, Boutin A, Shao Y, Miller L, Grotbeck EJ, Davis NW, Lim A, Dimalanta ET, Potamousis KD, Apodaca J, Anantharaman TS, Lin J, Yen G, Schwartz DC, Welch RA, Blattner FR (2001) Genome sequence of enterohaemorrhagic Escherichia coli O157:H7. Nature 409:529–533

    PubMed  CAS  Google Scholar 

  • Pohlner J, Halter R, Beyreuther K, Meyer TF (1987) Gene structure and extracellular secretion of Neisseria gonorrhoeae IgA protease. Nature 325:458–462

    PubMed  CAS  Google Scholar 

  • Pratt LA, Kolter R (1998) Genetic analysis of Escherichia coli biofilm formation: roles of flagella, motility, chemotaxis and type I pili. Mol Microbiol 30:285–293

    PubMed  CAS  Google Scholar 

  • Pratt LA, Kolter R (1999) Genetic analyses of bacterial biofilm formation. Curr Opin Microbiol 2:598–603

    PubMed  CAS  Google Scholar 

  • Prigent-Combaret C, Brombacher E, Vidal O, Ambert A, Lejeune P, Landini P, Dorel C (2001) Complex regulatory network controls initial adhesion and biofilm formation in Escherichia coli via regulation of the csgD gene. J Bacteriol 183:7213–7223

    PubMed  CAS  Google Scholar 

  • Prigent-Combaret C, Lejeune P (1999) Monitoring gene expression in biofilms. Methods Enzymol 310:56–79

    PubMed  CAS  Google Scholar 

  • Prigent-Combaret C, Prensier G, Le Thi TT, Vidal O, Lejeune P, Dorel C (2000) Developmental pathway for biofilm formation in curli-producing Escherichia coli strains: role of flagella, curli and colanic acid. Environ Microbiol 2:450–464

    PubMed  CAS  Google Scholar 

  • Prigent-Combaret C, Vidal O, Dorel C, Lejeune P (1999) Abiotic surface sensing and biofilm-dependent regulation of gene expression in Escherichia coli. J Bacteriol 181:5993–6002

    PubMed  CAS  Google Scholar 

  • Probert HM, Gibson GR (2002) Bacterial biofilms in the human gastrointestinal tract. Curr Issues Intest Microbiol 3:23–27

    PubMed  CAS  Google Scholar 

  • Pruss BM, Wolfe AJ (1994) Regulation of acetyl phosphate synthesis and degradation, and the control of flagellar expression in Escherichia coli. Mol Microbiol 12:973–984

    PubMed  CAS  Google Scholar 

  • Raetz CR (1996) Bacterial lipopolysaccharides: a remarkable family of bioactive macroamphiphiles. In: Neidhart FC, Curtiss R III, Ingraham JL, Lin ECC, Low KB, Magasanik B, Reznikoff WS, Riley M, Schaechter M, Umbarger HE (eds)Escherichia coli and Salmonella. Cellular and molecular biology, vol 2. ASM Press, Washington DC, p 69

    Google Scholar 

  • Raivio TL, Silhavy TJ (2001) Periplasmic stress and ECF sigma factors. Annu Rev Microbiol 55:591–624

    PubMed  CAS  Google Scholar 

  • Redfield RJ (2002) Is quorum sensing a side effect of diffusion sensing? Trends Microbiol 10:365–370

    PubMed  CAS  Google Scholar 

  • Reisner A, Haagensen JA, Schembri MA, Zechner EL, Molin S (2003) Development and maturation of Escherichia coli K-12 biofilms. Mol Microbiol 48:933–946

    PubMed  CAS  Google Scholar 

  • Reisner A, Höller BM, Molin S, Zechner EL (2006) Synergistic effects in mixed Escherichia coli biofilms: conjugative plasmid transfer drives biofilm expansion. J Bacteriol 188:3582–3588

    PubMed  CAS  Google Scholar 

  • Ren D, Bedzyk LA, Thomas SM, Ye RW, Wood TK (2004a) Gene expression in Escherichia coli biofilms. Appl Microbiol Biotechnol 64:515–524

    PubMed  CAS  Google Scholar 

  • Ren D, Bedzyk LA, Ye RW, Thomas SM, Wood TK (2004b) Differential gene expression shows natural brominated furanones interfere with the autoinducer-2 bacterial signaling system of Escherichia coli. Biotechnol Bioeng 88:630–642

    PubMed  CAS  Google Scholar 

  • Ren D, Bedzyk LA, Ye RW, Thomas SM, Wood TK (2004c) Stationary-phase quorum-sensing signals affect autoinducer-2 and gene expression in Escherichia coli. Appl Environ Microbiol 70:2038–2043

    PubMed  CAS  Google Scholar 

  • Ren D, Sims JJ, Wood TK (2001) Inhibition of biofilm formation and swarming of Escherichia coli by (5Z)-4-bromo-5-(bromomethylene)-3-butyl-2(5H)-furanone. Environ Microbiol 3:731–736

    PubMed  CAS  Google Scholar 

  • Roberts IS (1996) The biochemistry and genetics of capsular polysaccharide production in bacteria. Annu Rev Microbiol 50:285–315

    PubMed  CAS  Google Scholar 

  • Romling U (2002) Molecular biology of cellulose production in bacteria. Res Microbiol 153:205–212

    PubMed  Google Scholar 

  • Romling U (2005) Characterization of the rdar morphotype, a multicellular behaviour in Enterobacteriaceae. Cell Mol Life Sci 62:1234–1246

    PubMed  CAS  Google Scholar 

  • Romling U, Amikam D (2006) Cyclic di-GMP as a second messenger. Curr Opin Microbiol 9:218–228

    PubMed  Google Scholar 

  • Romling U, Bokranz W, Rabsch W, Zogaj X, Nimtz M, Tschape H (2003) Occurrence and regulation of the multicellular morphotype in Salmonella serovars important in human disease. Int J Med Microbiol 293:273–285

    PubMed  Google Scholar 

  • Romling U, Gomelsky M, Galperin MY (2005) C-di-GMP: the dawning of a novel bacterial signalling system. Mol Microbiol 57:629–639

    PubMed  Google Scholar 

  • Roux A, Beloin C, Ghigo JM (2005) Combined inactivation and expression strategy to study gene function under physiological conditions: application to identification of new Escherichia coli adhesins. J Bacteriol 187:1001–1013

    PubMed  CAS  Google Scholar 

  • Rupp ME, Fey PD, Heilmann C, Gotz F (2001) Characterization of the importance of Staphylococcus epidermidis autolysin and polysaccharide intercellular adhesin in the pathogenesis of intravascular catheter-associated infection in a rat model. J Infect Dis 183:1038–1042

    PubMed  CAS  Google Scholar 

  • Sahu SN, Acharya S, Tuminaro H, Patel I, Dudley K, LeClerc JE, Cebula TA, Mukhopadhyay S (2003) The bacterial adaptive response gene, barA, encodes a novel conserved histidine kinase regulatory switch for adaptation and modulation of metabolism in Escherichia coli. Mol Cell Biochem 253:167–177

    PubMed  CAS  Google Scholar 

  • Sailer FC, Meberg BM, Young KD (2003) Beta-lactam induction of colanic acid gene expression in Escherichia coli. FEMS Microbiol Lett 226:245–249

    PubMed  CAS  Google Scholar 

  • Santos JM, Lobo M, Matos AP, De Pedro MA, Arraiano CM (2002) The gene bolA regulates dacA (PBP5), dacC (PBP6) and ampC (AmpC), promoting normal morphology in Escherichia coli. Mol Microbiol 45:1729–1740

    PubMed  CAS  Google Scholar 

  • Sauer FG, Mulvey MA, Schilling JD, Martinez JJ, Hultgren SJ (2000) Bacterial pili: molecular mechanisms of pathogenesis. Curr Opin Microbiol 3:65–72

    PubMed  CAS  Google Scholar 

  • Schembri MA, Dalsgaard D, Klemm P (2004) Capsule shields the function of short bacterial adhesins. J Bacteriol 186:1249–1257

    PubMed  CAS  Google Scholar 

  • Schembri MA, Hjerrild L, Gjermansen M, Klemm P (2003a) Differential expression of the Escherichia coli autoaggregation factor antigen 43. J Bacteriol 185:2236–2242

    PubMed  CAS  Google Scholar 

  • Schembri MA, Kjaergaard K, Klemm P (2003b) Global gene expression in Escherichia coli biofilms. Mol Microbiol 48:253–267

    PubMed  CAS  Google Scholar 

  • Schembri MA, Klemm P (2001) Coordinate gene regulation by fimbriae-induced signal transduction. EMBO J 20:3074–3081

    PubMed  CAS  Google Scholar 

  • Schembri MA, Ussery DW, Workman C, Hasman H, Klemm P (2002) DNA microarray analysis of fim mutations in Escherichia coli. Mol Genet Genomics 267:721–729

    PubMed  CAS  Google Scholar 

  • Sheikh J, Hicks S, Dall’Agnol M, Phillips AD, Nataro JP (2001) Roles for Fis and YafK in biofilm formation by enteroaggregative Escherichia coli. Mol Microbiol 41:983–997

    PubMed  CAS  Google Scholar 

  • Sherlock O, Dobrindt U, Jensen JB, Munk Vejborg R, Klemm P (2006) Glycosylation of the self-recognizing Escherichia coli Ag43 autotransporter protein. J Bacteriol 188:1798–1807

    PubMed  CAS  Google Scholar 

  • Sherlock O, Schembri MA, Reisner A, Klemm P (2004) Novel roles for the AIDA adhesin from diarrheagenic Escherichia coli: cell aggregation and biofilm formation. J Bacteriol 186:8058–8065

    PubMed  CAS  Google Scholar 

  • Sherlock O, Vejborg RM, Klemm P (2005) The TibA adhesin/invasin from enterotoxigenic Escherichia coli is self recognizing and induces bacterial aggregation and biofilm formation. Infect Immun 73:1954–1963

    PubMed  CAS  Google Scholar 

  • Shin S, Park C (1995) Modulation of flagellar expression in Escherichia coli by acetyl phosphate and the osmoregulator OmpR. J Bacteriol 177:4696–4702

    PubMed  CAS  Google Scholar 

  • Simm R, Fetherston JD, Kader A, Romling U, Perry RD (2005) Phenotypic convergence mediated by GGDEF-domain-containing proteins. J Bacteriol 187:6816–6823

    PubMed  CAS  Google Scholar 

  • Simm R, Morr M, Kader A, Nimtz M, Romling U (2004) GGDEF, EAL domains inversely regulate cyclic di-GMP levels and transition from sessility to motility. Mol Microbiol 53:1123–1134

    PubMed  CAS  Google Scholar 

  • Simonsen L (1990) Dynamics of plasmid transfer on surfaces. J Gen Microbiol 136:1001–1007

    PubMed  CAS  Google Scholar 

  • Sledjeski D, Gottesman S (1995) A small RNA acts as an antisilencer of the H-NS-silenced rcsA gene of Escherichia coli. Proc Natl Acad Sci U S A 92:2003–2007

    PubMed  CAS  Google Scholar 

  • Sledjeski DD, Gottesman S (1996) Osmotic shock induction of capsule synthesis in Escherichia coli K-12. J Bacteriol 178:1204–1206

    PubMed  CAS  Google Scholar 

  • Smyth CJ, Marron MB, Twohig JM, Smith SG (1996) Fimbrial adhesins: similarities and variations in structure and biogenesis. FEMS Immunol Med Microbiol 16:127–139

    PubMed  CAS  Google Scholar 

  • Snyder WB, Davis LJ, Danese PN, Cosma CL, Silhavy TJ (1995) Overproduction of NlpE, a new outer membrane lipoprotein, suppresses the toxicity of periplasmic LacZ by activation of the Cpx signal transduction pathway. J Bacteriol 177:4216–4223

    PubMed  CAS  Google Scholar 

  • Sohanpal BK, El-Labany S, Lahooti M, Plumbridge JA, Blomfield IC (2004) Integrated regulatory responses of fimB to N-acetylneuraminic (sialic) acid and GlcNAc in Escherichia coli K-12. Proc Natl Acad Sci U S A 101:16322–16327

    PubMed  CAS  Google Scholar 

  • Solano C, Garcia B, Valle J, Berasain C, Ghigo JM, Gamazo C, Lasa I (2002) Genetic analysis of Salmonella enteritidis biofilm formation: critical role of cellulose. Mol Microbiol 43:793–808

    PubMed  CAS  Google Scholar 

  • Soutourina O, Kolb A, Krin E, Laurent-Winter C, Rimsky S, Danchin A, Bertin P (1999) Multiple control of flagellum biosynthesis in Escherichia coli: role of H-NS protein and the cyclic AMP-catabolite activator protein complex in transcription of the flhDC master operon. J Bacteriol 181:7500–7508

    PubMed  CAS  Google Scholar 

  • Soutourina OA, Bertin PN (2003) Regulation cascade of flagellar expression in Gram-negative bacteria. FEMS Microbiol Rev 27:505–523

    PubMed  CAS  Google Scholar 

  • Sperandio V, Torres AG, Kaper JB (2002) Quorum sensing Escherichia coli regulators B, C (QseBC): a novel two-component regulatory system involved in the regulation of flagella and motility by quorum sensing in E. coli. Mol Microbiol 43:809–821

    PubMed  CAS  Google Scholar 

  • Starkey M, Gray AK, Chang SI, Parsek M (2004) A sticky business: the extracellular polymeric substance matrix of bacterial biofilms. In: Ghannoum M, O’Toole GA (eds) Microbial biofilms, vol 336. ASM Press, Washington DC, pp 174–191

    Google Scholar 

  • Stevenson G, Andrianopoulos K, Hobbs M, Reeves PR (1996) Organization of the Escherichia coli K-12 gene cluster responsible for production of the extracellular polysaccharide colanic acid. J Bacteriol 178:4885–4893

    PubMed  CAS  Google Scholar 

  • Sturgill G, Toutain CM, Komperda J, O’Toole GA, Rather PN (2004) Role of CysE in production of an extracellular signaling molecule in Providencia stuartii and Escherichia coli: loss of CysE enhances biofilm formation in Escherichia coli. J Bacteriol 186:7610–7617

    PubMed  CAS  Google Scholar 

  • Sutherland IW (2001) The biofilm matrix - an immobilized but dynamic microbial environment. Trends Microbiol 9:222–227

    PubMed  CAS  Google Scholar 

  • Suzuki K, Wang X, Weilbacher T, Pernestig AK, Melefors O, Georgellis D, Babitzke P, Romeo T (2002) Regulatory circuitry of the CsrA/CsrB, BarA/UvrY systems of Escherichia coli. J Bacteriol 184:5130–5140

    PubMed  CAS  Google Scholar 

  • Tenorio E, Saeki T, Fujita K, Kitakawa M, Baba T, Mori H, Isono K (2003) Systematic characterization of Escherichia coli genes/ORFs affecting biofilm formation. FEMS Microbiol Lett 225:107–114

    PubMed  CAS  Google Scholar 

  • Uhlich GA, Cooke PH, Solomon EB (2006) Analyses of the red-dry-rough phenotype of an Escherichia coli O157:H7 strain and its role in biofilm formation and resistance to antibacterial agents. Appl Environ Microbiol 72:2564–2572

    PubMed  CAS  Google Scholar 

  • Ulett GC, Webb RI, Schembri MA (2006) Antigen-43-mediated autoaggregation impairs motility in Escherichia coli. Microbiology 152:2101–2110

    PubMed  CAS  Google Scholar 

  • Valle J, Da Re S, Henry N, Fontaine T, Balestrino D, Latour-Lambert P, Ghigo JM (2006) Broad-spectrum biofilm inhibition by a secreted bacterial polysaccharide. Proc Natl Acad Sci U S A 103:12558–12563

    PubMed  CAS  Google Scholar 

  • Van Biesen T, Frost LS (1992) Differential levels of fertility inhibition among F-like plasmids are related to the cellular concentration of finO mRNA. Mol Microbiol 6:771–780

    PubMed  CAS  Google Scholar 

  • Van der Woude MW (2006) Re-examining the role and random nature of phase variation. FEMS Microbiol Lett 254:190–197

    PubMed  Google Scholar 

  • Van der Woude MW, Baumler AJ (2004) Phase and antigenic variation in bacteria. Clin Microbiol Rev 17:581–611

    PubMed  Google Scholar 

  • Van Houdt R, Aertsen A, Moons P, Vanoirbeek K, Michiels CW (2006) N-acyl-L-homoserine lactone signal interception by Escherichia coli. FEMS Microbiol Lett 256:83–89

    PubMed  CAS  Google Scholar 

  • Van Loosdrecht MC, Lyklema J, Norde W, Zehnder AJ (1990) Influence of interfaces on microbial activity. Microbiol Rev 54:75–87

    PubMed  CAS  Google Scholar 

  • Vianney A, Jubelin G, Renault S, Dorel C, Lejeune P, Lazzaroni JC (2005)Escherichia coli tol and rcs genes participate in the complex network affecting curli synthesis. Microbiology 151:2487–2497

    PubMed  CAS  Google Scholar 

  • Vidal O, Longin R, Prigent-Combaret C, Dorel C, Hooreman M, Lejeune P (1998) Isolation of an Escherichia coli K-12 mutant strain able to form biofilms on inert surfaces: involvement of a new ompR allele that increases curli expression. J Bacteriol 180:2442–2449

    PubMed  CAS  Google Scholar 

  • Vieira HL, Freire P, Arraiano CM (2004) Effect of Escherichia coli Morphogene bolA on Biofilms. Appl Environ Microbiol 70:5682–5684

    PubMed  CAS  Google Scholar 

  • Voulhoux R, Bos MP, Geurtsen J, Mols M, Tommassen J (2003) Role of a highly conserved bacterial protein in outer membrane protein assembly. Science 299:262–265

    PubMed  CAS  Google Scholar 

  • Wallecha A, Correnti J, Munster V, van der Woude M (2003) Phase variation of Ag43 is independent of the oxidation state of OxyR. J Bacteriol 185:2203–2209

    PubMed  CAS  Google Scholar 

  • Wallecha A, Munster V, Correnti J, Chan T, van der Woude M (2002) Dam- and OxyR-dependent phase variation of agn43: essential elements and evidence for a new role of DNA methylation. J Bacteriol 184:3338–3347

    PubMed  CAS  Google Scholar 

  • Wang D, Ding X, Rather PN (2001) Indole can act as an extracellular signal in Escherichia coli. J Bacteriol 183:4210–4216

    PubMed  CAS  Google Scholar 

  • Wang X, Dubey AK, Suzuki K, Baker CS, Babitzke P, Romeo T (2005) CsrA post-transcriptionally represses pgaABCD, responsible for synthesis of a biofilm polysaccharide adhesin of Escherichia coli. Mol Microbiol 56:1648–1663

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Preston JF 3rd, Romeo T (2004) The pgaABCD locus of Escherichia coli promotes the synthesis of a polysaccharide adhesin required for biofilm formation. J Bacteriol 186:2724–2734

    PubMed  CAS  Google Scholar 

  • Weber H, Pesavento C, Possling A, Tischendorf G, Hengge R (2006) Cyclic-di-GMP-mediated signalling within the sigma network of Escherichia coli. Mol Microbiol 62:1014–1034

    PubMed  CAS  Google Scholar 

  • Wei BL, Brun-Zinkernagel AM, Simecka JW, Pruss BM, Babitzke P, Romeo T (2001) Positive regulation of motility and flhDC expression by the RNA-binding protein CsrA of Escherichia coli. Mol Microbiol 40:245–256

    PubMed  CAS  Google Scholar 

  • Welch RA, Burland V, Plunkett G 3rd, Redford P, Roesch P, Rasko D, Buckles EL, Liou SR, Boutin A, Hackett J, Stroud D, Mayhew GF, Rose DJ, Zhou S, Schwartz DC, Perna NT, Mobley HL, Donnenberg MS, Blattner FR (2002) Extensive mosaic structure revealed by the complete genome sequence of uropathogenic Escherichia coli. Proc Natl Acad Sci U S A 99:17020–17024

    PubMed  CAS  Google Scholar 

  • White AP, Gibson DL, Collinson SK, Banser PA, Kay WW (2003) Extracellular polysaccharides associated with thin aggregative fimbriae of Salmonella enterica serovar enteritidis. J Bacteriol 185:5398–5407

    PubMed  CAS  Google Scholar 

  • Whitfield C (2006) Biosynthesis and assembly of capsular polysaccharides in Escherichia coli. Annu Rev Biochem 75:39–68

    PubMed  CAS  Google Scholar 

  • Whitfield C, Roberts IS (1999) Structure, assembly and regulation of expression of capsules in Escherichia coli. Mol Microbiol 31:1307–1319

    PubMed  CAS  Google Scholar 

  • Wolfe AJ, Chang DE, Walker JD, Seitz-Partridge JE, Vidaurri MD, Lange CF, Pruss BM, Henk MC, Larkin JC, Conway T (2003) Evidence that acetyl phosphate functions as a global signal during biofilm development. Mol Microbiol 48:977–988

    PubMed  CAS  Google Scholar 

  • Wood TK, Gonzalez Barrios AF, Herzberg M, Lee J (2006) Motility influences biofilm architecture in Escherichia coli. Appl Microbiol Biotechnol:1–7

    Google Scholar 

  • Wuertz S, Okabe S, Hausner M (2004) Microbial communities and their interactions in biofilm systems: an overview. Water Sci Technol 49:327–336

    PubMed  CAS  Google Scholar 

  • Xavier KB, Bassler BL (2003) LuxS quorum sensing: more than just a numbers game. Curr Opin Microbiol 6:191–197

    PubMed  CAS  Google Scholar 

  • Xavier KB, Bassler BL (2005) Regulation of uptake and processing of the quorum-sensing autoinducer AI-2 in Escherichia coli. J Bacteriol 187:238–248

    PubMed  CAS  Google Scholar 

  • Xie Y, Yao Y, Kolisnychenko V, Teng CH, Kim KS (2006) HbiF regulates type 1 fimbriation independently of FimB, FimE. Infect Immun 74:4039–4047

    PubMed  CAS  Google Scholar 

  • Yamamoto K, Nagura R, Tanabe H, Fujita N, Ishihama A, Utsumi R (2000) Negative regulation of the bolA1p of Escherichia coli K-12 by the transcription factor OmpR for osmolarity response genes. FEMS Microbiol Lett 186:257–262

    PubMed  CAS  Google Scholar 

  • Yoshioka Y, Ohtsubo H, Ohtsubo E (1987) Repressor gene finO in plasmids R100 and F: constitutive transfer of plasmid F is caused by insertion of IS3 into F finO. J Bacteriol 169:619–623

    PubMed  CAS  Google Scholar 

  • Zobell CE (1943) The effect of solid surfaces upon bacterial activity. J Bacteriol 46:39–56

    PubMed  CAS  Google Scholar 

  • Zogaj X, Bokranz W, Nimtz M, Romling U (2003) Production of cellulose and curli fimbriae by members of the family Enterobacteriaceae isolated from the human gastrointestinal tract. Infect Immun 71:4151–4158

    PubMed  CAS  Google Scholar 

  • Zogaj X, Nimtz M, Rohde M, Bokranz W, Romling U (2001) The multicellular morphotypes of Salmonella typhimurium and Escherichia coli produce cellulose as the second component of the extracellular matrix. Mol Microbiol 39:1452–1463

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Beloin, C., Roux, A., Ghigo, J.M. (2008). Escherichia coli Biofilms. In: Romeo, T. (eds) Bacterial Biofilms. Current Topics in Microbiology and Immunology, vol 322. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75418-3_12

Download citation

Publish with us

Policies and ethics