Advertisement

From Algebraic Graph Transformation to Adhesive HLR Categories and Systems

  • Ulrike Prange
  • Hartmut Ehrig
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4728)

Abstract

In this paper, we present an overview of algebraic graph transformation in the double pushout approach. Basic results concerning independence, parallelism, concurrency, embedding, critical pairs and confluence are introduced. As a generalization, the categorical framework of adhesive high-level replacement systems is introduced which allows to instantiate the rich theory to several interesting classes of high-level structures.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rozenberg, G.: Handbook of Graph Grammars and Computing by Graph Transformation, Foundations, vol. 1. World Scientific, Singapore (1997)Google Scholar
  2. 2.
    Ehrig, H., Engels, G., Kreowski, H.-J., Rozenberg, G.: Handbook of Graph Grammars and Computing by Graph Transformation, Applications, Languages and Tools, vol. 2. World Scientific, Singapore (1999)Google Scholar
  3. 3.
    Ehrig, H., Kreowski, H.-J., Montanari, U., Rozenberg, G.: Handbook of Graph Grammars and Computing by Graph Transformation, Concurrency, Parallelism and Distribution, vol. 3. World Scientific, Singapore (1999)Google Scholar
  4. 4.
    Ehrig, H., Habel, A., Kreowski, H.-J., Parisi-Presicce, F.: From Graph Grammars to High Level Replacement Systems. In: Ehrig, H., Kreowski, H.-J., Rozenberg, G. (eds.) Graph Grammars and Their Application to Computer Science. LNCS, vol. 532, pp. 269–291. Springer, Heidelberg (1991)CrossRefGoogle Scholar
  5. 5.
    Ehrig, H., Habel, A., Kreowski, H.-J., Parisi-Presicce, F.: Parallelism and Concurrency in High-Level Replacement Systems. MSCS 1(3), 361–404 (1991)zbMATHMathSciNetGoogle Scholar
  6. 6.
    Ehrig, H., Habel, A., Padberg, J., Prange, U.: Adhesive High-Level Replacement Categories and Systems. In: Ehrig, H., Engels, G., Parisi-Presicce, F., Rozenberg, G. (eds.) ICGT 2004. LNCS, vol. 3256, pp. 144–160. Springer, Heidelberg (2004)Google Scholar
  7. 7.
    Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph Transformation. Springer, Heidelberg (2006)zbMATHGoogle Scholar
  8. 8.
    Lack, S., Sobociński, P.: Adhesive Categories. In: Walukiewicz, I. (ed.) FOSSACS 2004. LNCS, vol. 2987, pp. 273–288. Springer, Heidelberg (2004)Google Scholar
  9. 9.
    Lynch, N.: Distributed Algorithms. Morgan Kaufmann, San Mateo, CA (1996)zbMATHGoogle Scholar
  10. 10.
    Plump, D.: On Termination of Graph Rewriting. In: Nagl, M. (ed.) WG 1995. LNCS, vol. 1017, pp. 88–100. Springer, Heidelberg (1995)Google Scholar
  11. 11.
    Sobociński, P.: Deriving Process Congruences from Reaction Rules. PhD thesis, BRICS (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Ulrike Prange
    • 1
  • Hartmut Ehrig
    • 1
  1. 1.Technical University of BerlinGermany

Personalised recommendations