Advertisement

Recognizable vs. Regular Picture Languages

  • Oliver Matz
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4728)

Abstract

The class of regular word languages plays a central role in formal language theory. Considerable effort has been made to transfer definitions and applications from word languages to their two-dimensional analog, the picture languages, where one considers (two-dimensional) matrices rather than (one-dimensional) words.

Keywords

Regular Expression Tiling System Closure Property Formal Language Theory Word Language 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anselmo, M., Giammarresi, D., Madonia, M.: New operations and regular expressions for two-dimensional languages over one-letter alphabet. Theor. Comput. Sci. 340(1), 408–431 (2005)Google Scholar
  2. 2.
    Anselmo, M., Giammarresi, D., Madonia, M.: From determinism to non-determinism in recognizable two-dimensional languages. In: Developments in Language Theory. Springer, Heidelberg (to appear, 2007)Google Scholar
  3. 3.
    Anselmo, M., Giammarresi, D., Madonia, M., Restivo, A.: Unambigiuos recognizable two-dimensional languages. Inf. Theor. Appl. 40, 277–293 (2006)Google Scholar
  4. 4.
    Anselmo, M., Madonia, M.: Deterministic two-dimensional languages over one-letter alphabet. In: CD proceedings of CAI (2007)Google Scholar
  5. 5.
    Borchert, B., Reinhardt, K.: Deterministically and sudoku-deterministically recognizable picture languages (2006), http://tobias-lib.ub.uni-tuebingen.de/volltexte/2006/2503/
  6. 6.
    Bozapalidis, S., Grammatikopoulou, A.: Recognizable picture series. Journal of Automata, Languages and Combinatorics 10(2/3), 159–183 (2005)Google Scholar
  7. 7.
    Giammarresi, D.: Two-dimensional languages and recognizable functions. In: Rozenberg, G., Salomaa, A. (eds.) Developments in Language Theory, Proceedings of the conference, Turku (Finnland), 1993, pp. 290–301. world scientific, Singapore (1994)Google Scholar
  8. 8.
    Giammarresi, D.: Tiling recognizable two-dimensional languages (included in these proceedings). Springer, Heidelberg (2007)Google Scholar
  9. 9.
    Giammarresi, D., Restivo, A.: Recognizable picture languages. In: Proceedings First International Colloqium on Parallel Image Processing 1991. International Journal Pattern Recognition and Artificial Intelligence, vol. 6, pp. 241–256 (1992)Google Scholar
  10. 10.
    Giammarresi, D., Restivo, A.: Two-dimensional languages. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Language Theory, vol. III, pp. 215–268. Springer, New York (1996)Google Scholar
  11. 11.
    Giammarresi, D., Restivo, A., Seibert, S., Thomas, W.: Monadic second-order logic and recognizability by tiling systems. Information and Computation 125, 32–45 (1996)Google Scholar
  12. 12.
    Inoue, K., Nakamura, A.: Nonclosure properties of two-dimensional on-line tessellation acceptors and one-way parallel/sequential array acceptors. Transaction of IECE of Japan 6, 475–476 (1977)Google Scholar
  13. 13.
    Inoue, K., Nakamura, A.: Some properties of two-dimensional on-line tessellation acceptors. Information Sciences 13, 95–121 (1977)Google Scholar
  14. 14.
    Inoue, K., Takanami, I.: A survey of two-dimensional automata theory. In: Dassow, J., Kelemen, J. (eds.) Proceedings 5th International Meeting of Young Computer Scientists. 5th International Meeting of Young Computer Scientists. LNCS, vol. 381, pp. 72–91. Springer, Heidelberg (1990)Google Scholar
  15. 15.
    Inoue, K., Takanami, I.: A characterization of recognizable picture languages. In: Dassow, J., Kelemen, J. (eds.) Machines, Languages, and Complexity. LNCS, vol. 381, pp. 133–143. Springer, Heidelberg (1992)Google Scholar
  16. 16.
    Latteux, M., Simplot, D.: Context-sensitive string languages and recognizable picture languages. Information and Computation 138, 160–169 (1997)Google Scholar
  17. 17.
    Latteux, M., Simplot, D.: Recognizable picture languages and domino tiling. Theoretical Computer Science 178(1-2), 275–283 (1997)Google Scholar
  18. 18.
    Matz, O.: Klassifizierung von Bildsprachen mit rationalen Ausdrücken, Grammatiken und Logik-Formeln. Diploma thesis, Christian-Albrechts-Universität Kiel (in German) (1995)Google Scholar
  19. 19.
    Matz, O.: Regular expressions and context-free grammars for picture languages. In: Reischuk, R., Morvan, M. (eds.) STACS 1997. LNCS, vol. 1200, pp. 283–294. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  20. 20.
    Matz, O.: On piecewise testable, starfree, and recognizable picture languages. In: Nivat, M. (ed.) ETAPS 1998 and FOSSACS 1998. LNCS, vol. 1378, pp. 203–210. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  21. 21.
    Matz, O.: One quantifier will do in existential monadic second-order logic over pictures. In: Brim, L., Gruska, J., Zlatuška, J. (eds.) MFCS 1998. LNCS, vol. 1450, pp. 751–759. Springer, Heidelberg (1998)Google Scholar
  22. 22.
    Matz, O.: Dot-depth, monadic quantifier alternation, and first-order closure over grids and pictures. Theor. Comput. Sci. 270(1-2), 1–70 (2002)Google Scholar
  23. 23.
    Matz, O.: A Kleene theorem for regular picture languages. Technical Report 0703, Christian-Albrechts-Universität Kiel (2007)Google Scholar
  24. 24.
    Matz, O., Thomas, W.: The monadic quantifier alternation hierarchy over graphs is infinite. In: Twelfth Annual IEEE Symposium on Logic in Computer Science, Warsaw, Poland, pp. 236–244. IEEE Computer Society Press, Los Alamitos (1997)Google Scholar
  25. 25.
    Prophetis de, L., Varricchio, S.: Recognizability of rectangular pictures by wang systems. Journal of Automata, Languages and Combinatorics 2, 269–288 (1997)Google Scholar
  26. 26.
    Reinhardt, K.: On some recognizable picture-languages. In: Brim, L., Gruska, J., Zlatuška, J. (eds.) MFCS 1998. LNCS, vol. 1450, pp. 760–770. Springer, Heidelberg (1998)Google Scholar
  27. 27.
    Reinhardt, K.: The #a = #b pictures are recognizable. In: Symposium on Theoretical Aspects of Computer Science, pp. 527–538 (2001)Google Scholar
  28. 28.
    Schweikardt, N.: The monadic quantifier alternation hierarchy over grids and pictures. In: Nielsen, M. (ed.) CSL 1997. LNCS, vol. 1414, pp. 441–460. Springer, Heidelberg (1998)Google Scholar
  29. 29.
    Simplot, D.: A characterization of recognizable picture languages by tilings by finite sets. Theoretical Computer Science 218(2), 297–323 (1999)Google Scholar
  30. 30.
    Siromoney, R.: Advances in array languages. In: Ehrig, H., Nagl, M., Rosenfeld, A., Rozenberg, G. (eds.) Graph-Grammars and Their Application to Computer Science. LNCS, vol. 291, pp. 549–563. Springer, Heidelberg (1987)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Oliver Matz
    • 1
  1. 1.Institut für Informatik, Universität KielGermany

Personalised recommendations