Algebraic Methods in Quantum Informatics

  • Jozef Gruska
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4728)


The paper presents and discuses several important problems and challenges of quantum informatics at which algebraic methods have been, or expect to be, very useful, or even of the key importance.

Some of these problems came up quite naturally, at a very straightforward quantumization of the classical informatics concepts, models and problems. However, the most attractive/important ones come up when one starts to dig deeper into the quantum world, into its phenomena, processes, laws and limitations. Among them are problems that belong to grand challenges not only of informatics (and physics), but of all current science. To get involved in exploration of such challenges is therefore much desirable for informatics community with algebraic expertise.


Entangle State Quantum Entanglement Quantum Information Processing Regular Language Algebraic Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aaronson, S.: Are quantum states exponentially long vectors? quant-ph/0507242 (2005)Google Scholar
  2. 2.
    Aharonov, D., Landau, Z., Makowsky, J.: The quantum FFT can be classically simulated. quant-ph/0611156 (2006)Google Scholar
  3. 3.
    Ambainis, A., Watrous, J.: Two-way finite automata with quantum and classical states. quant-ph/9911009 (1999)Google Scholar
  4. 4.
    Bacon, D.: How a Glebsh-Gordan transform helps to solve the Heisenberg Hidden Subgroup problem. quant-ph/0612107 (2006)Google Scholar
  5. 5.
    Bacon, D., Childs, A., van Dam, W.: Optimal measurements for the dihedral hidden subgroup problem. quant-ph/0501044 (2005)Google Scholar
  6. 6.
    Barnum, H., Knill, E., Ortiz, G., Somma, R., Viola, L.: A subsystem-independent generalization of entanglement. quant-ph/0305023 (2003)Google Scholar
  7. 7.
    Bertoni, S., Mereghetti, K., Palano, B.: Quantum computing: 1-way quantum automata. In: Ésik, Z., Fülöp, Z. (eds.) DLT 2003. LNCS, vol. 2710, pp. 1–20. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  8. 8.
    Bozapalidis, S.: Quantum recognizabla tree functions. In: Proceedings of the Conference on Unconventional models of computation - UMC’2K, pp. 25–47 (2000)Google Scholar
  9. 9.
    Bozapalidis, S.: Extending stochastic and quantum functions. Theory of computing systems 36(3), 183–197 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Brassard, G., Buhrman, H., Linden, N., Méthot, A.A., Tapp, A., Unger, F.: A limit on non-locality in any world in which communication complexity is not trivial. quant-ph/0508042 (2005)Google Scholar
  11. 11.
    Cerf, N., Gisin, N., Masar, S., Popescu, S.: Quantum entanglement can be simulated without communication. Physical Review Letter, 94:220403 (2005)Google Scholar
  12. 12.
    Cirel’son, B.S.: Quantum generalization’s of Bell’s inequality. Letters in Mathematical Physics 4(2), 93–100 (1980)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Clifton, R., Bub, J., Halvorson, H.: Characterizing quantum theory in terms of information-theoretic constraints. quant-ph/0211089 (2002)Google Scholar
  14. 14.
    Ettinger, M., Hoyer, P., Knill, E.: The quantum query complexity of the hidden subgroup problem is polynomial. quant-ph/0401083 (2004)Google Scholar
  15. 15.
    Gisin, N.: Bell inequalities: many questions, a few answers. quant-ph/0702021 (2007)Google Scholar
  16. 16.
    J. Gruska. Quantum computing. McGraw-Hill, 1999-2005, see also additions and updatings of the book on
  17. 17.
    Gruska, J.: Descriptional complexity issues in quantum computing. Automata, Languages and Combinatorics 5(3), 198–218 (2000)MathSciNetGoogle Scholar
  18. 18.
    Gruska, J.: Quantum entanglement as a new quantum information processing resource. New Generation Computing 21, 279–295 (2003)zbMATHGoogle Scholar
  19. 19.
    Gruska, J.: General Theory of information transfer and combinatorics, Universal sets of quantum information processing primitives and optimal use of such primitives, pp. 356–377. Springer-Heidelberg (2005)Google Scholar
  20. 20.
    Gruska, J.: From informatics to quantum informatics. In: Proceedings of the Fourth IFIP International Conference on Theoretical Computer Science- TCS 2006 at the World Computer Congress, pp. 17–46 (2006)Google Scholar
  21. 21.
    Gruska, J.: Recent advances in Formal Languages and Applications. Studies in Computatiional Intelligence 25, 81–117 (2006)CrossRefGoogle Scholar
  22. 22.
    Gudder, S.: Basic properties of quantum automata. email: (2000)Google Scholar
  23. 23.
    Hallgren, S., Moore, C., Roetteler, M., Russel, A., Sen, P.: Limitations of quantum coset states for graph isomorphism. In: Proceedings of 38th STOC, pp. 604–617 (2006)Google Scholar
  24. 24.
    Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. quant-ph/0702225 (2007)Google Scholar
  25. 25.
    Kuperberg, G.: A subexponential-time quantum algorithm for the dihedral hidden subgroup problem. New Generation Computing, see also quant-ph/0302112 35, 170–188 (2005)Google Scholar
  26. 26.
    Markov, I., Shi, Y.: Simulating quantum computation by contracting tensor. quant-ph/0511069 (2002)Google Scholar
  27. 27.
    Mereghetti, C., Palano, B.: Quantum finite automata with control language. Tech. rep. (2006)Google Scholar
  28. 28.
    Methot, A.A., Scarani, V.: An anomality of non-locality. quant-ph/0601210 (2000)Google Scholar
  29. 29.
    Moore, C., Russell, A., Sniady, P.: On the impossibility of a quantum sieve algorithm for graph isomorphism: unconditional result. quant-ph/0612089 (2006)Google Scholar
  30. 30.
    Moore, C., Russell, A., Vazirani, U.: A classical one-way function to confound quantum adversaries. quant-ph/0701115 (2007)Google Scholar
  31. 31.
    Nielsen, M.A., Chuang, I.I.: Quantum information processing. Cambridge University Press, Cambridge (2000)Google Scholar
  32. 32.
    Rao, M.V.P., Vinay, V.: Quantum finite automata and weighted automata (2007)Google Scholar
  33. 33.
    Perdrix, S.: Towards minimal resources of measurement-based quantum computation. quant-ph/070.0202 (2007)Google Scholar
  34. 34.
    Popescu, S., Rohrlich, D.: Causality and non-locality as axioms for quantum mechanics. quant-ph/9709026 (1997)Google Scholar
  35. 35.
    Scarani, V.: Feats, features and failures of the PR-box. quant-ph/0603017 (2006)Google Scholar
  36. 36.
    Shi, Y.: Both Toffoli and controlled-NOT need little help to do universal computation. quant-ph/0205115 (2002)Google Scholar
  37. 37.
    Short, T., Gisin, N., Popescu, S.: The physics of no-bit commitment generalized quantum non-locality versus oblivious transfer. quant-ph/0504134 (2005)Google Scholar
  38. 38.
    Smolin, J.A.: Can quantum cryptography imply quantum mechanics. quant-ph/0310067 (2003)Google Scholar
  39. 39.
    Tucci, R.R.: A rudimentary quantum compiler. quant-ph/9902062 (1999)Google Scholar
  40. 40.
    van Dam, W.: Implausible consequences of superstrong nonlocality. quant-ph/0501159 (2005)Google Scholar
  41. 41.
    Hallgren, S., van Dim, W., Ip, L.: Quantum algorithms for some hidden shift problems. quant-ph/0211140 (2002)Google Scholar
  42. 42.
    Watrous, J.: Quantum algorithms for solvable groups. quant-ph/0011023 (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Jozef Gruska
    • 1
  1. 1.Faculty of informatics, Masaryk university, Botanická 68a, 60200 BrnoCzech Republic

Personalised recommendations