Advertisement

Restarting Tree Automata and Linear Context-Free Tree Languages

  • Heiko Stamer
  • Friedrich Otto
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4728)

Abstract

We derive a normal form for linear context-free tree grammars that involves only growing productions. Based on this normal form we then show that all linear context-free tree languages are recognized by restarting tree automata which utilize auxiliary symbols.

Keywords

Transformation Rule Transitive Closure Ground Term Tree Automaton Tree Language 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arnold, A., Dauchet, M.: Un théorème de duplication pour les forêts algébriques. Journal of Computer and System Sciences 13, 223–244 (1976)zbMATHMathSciNetGoogle Scholar
  2. 2.
    Aho, A.V.: Indexed grammars—An extension of context-free grammars. Journal of the ACM 15, 647–671 (1968)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press, Cambridge (1998)Google Scholar
  4. 4.
    Fischer, M.J.: Grammars with macro-like productions. In: IEEE Conf. Record, 9th Ann. Symp. on Switching and Automata Theory, pp. 131–142. IEEE Computer Society Press, Los Alamitos (1968)Google Scholar
  5. 5.
    Fujiyoshi, A.: Restrictions on monadic context-free tree grammars. In: COLING 2004, Proc., pp. 78–84 (2004)Google Scholar
  6. 6.
    Fujiyoshi, A.: Linearity and nondeletion on monadic context-free tree grammars. Information Processing Letters 93, 103–107 (2005)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Fujiyoshi, A., Kasai, T.: Spinal-formed context-free tree grammars. Theory of Computing Systems 33, 59–83 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Guessarian, I.: Pushdown tree automata. Mathematical Systems Theory 16, 237–263 (1983)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Jančar, P., Mráz, F., Plátek, M., Vogel, J.: On restarting automata with rewriting. In: Păun, G., Salomaa, A. (eds.) New Trends in Formal Languages. LNCS, vol. 1218, pp. 119–136. Springer, Heidelberg (1997)Google Scholar
  10. 10.
    Kepser, S., Mönnich, U.: Closure properties of linear context-free tree languages with an application to optimality theory. Theoretical Computer Science 354, 82–97 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Maibaum, T.S.E.: A generalized approach to formal languages. Journal of Computer and System Sciences 8, 409–439 (1974)zbMATHMathSciNetGoogle Scholar
  12. 12.
    Maibaum, T.S.E.: Pumping lemmas for term languages. Journal of Computer and System Sciences 17, 319–330 (1978)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Otto, F.: Restarting automata and their relations to the Chomsky hierarchy. In: Ésik, Z., Fülöp, Z. (eds.) DLT 2003. LNCS, vol. 2710, pp. 55–74. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  14. 14.
    Rounds, W.C.: Tree-oriented proofs of some theorems on context-free and indexed languages. In: Second Annual ACM Symp. on Theory of Computing, Proc., pp. 109–116. ACM Press, New York (1970)CrossRefGoogle Scholar
  15. 15.
    Schimpf, K.M., Gallier, J.H.: Tree pushdown automata. Journal of Computer and System Sciences 30, 25–40 (1985)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Seki, H., Kato, Y.: On the generative power of multiple context-free grammars and macro grammars. Information Science Technical Report, NAIST-IS-TR2006007, Nara Institute of Science and Technology (2006)Google Scholar
  17. 17.
    Stamer, H., Otto, F.: Restarting tree automata. In: van Leeuwen, J., Italiano, G.F., van der Hoek, W., Meinel, C., Sack, H., Plášil, F. (eds.) SOFSEM 2007. LNCS, vol. 4362, pp. 510–521. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  18. 18.
    Vijay-Shankar, K., Weir, D.J.: The equivalence of four extensions of context-free grammars. Mathematical Systems Theory 27, 511–546 (1994)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Heiko Stamer
    • 1
  • Friedrich Otto
    • 1
  1. 1.Fachbereich Elektrotechnik/Informatik, Universität Kassel, D-34109 KasselGermany

Personalised recommendations