Learning Deterministically Recognizable Tree Series — Revisited

  • Andreas Maletti
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4728)


We generalize a learning algorithm originally devised for deterministic all-accepting weighted tree automata (wta) to the setting of arbitrary deterministic wta. The learning is exact, supervised, and uses an adapted minimal adequate teacher; a learning model introduced by Angluin. Our algorithm learns a minimal deterministic wta that recognizes the taught tree series and runs in polynomial time in the size of that wta and the size of the provided counterexamples. Compared to the original algorithm, we show how to handle non-final states in the learning process; this problem was posed as an open problem in [Drewes, Vogler: Learning Deterministically Recognizable Tree Series, J. Autom. Lang. Combin. 2007].


Learning Algorithm Parse Tree Recursive Call Tree Series Hadamard Product 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Angluin, D.: Inductive inference of formal languages from positive data. Inform. and Control 45(2), 117–135 (1980)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Angluin, D.: Learning regular sets from queries and counterexamples. Inform. and Comput. 75(2), 87–106 (1987)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Angluin, D.: Queries and concept learning. Machine Learning 2(4), 319–342 (1987)Google Scholar
  4. 4.
    Angluin, D.: Queries revisited. In: Abe, N., Khardon, R., Zeugmann, T. (eds.) ALT 2001. LNCS (LNAI), vol. 2225, pp. 12–31. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  5. 5.
    Borchardt, B.: The Myhill-Nerode theorem for recognizable tree series. In: Ésik, Z., Fülöp, Z. (eds.) DLT 2003. LNCS, vol. 2710, pp. 146–158. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  6. 6.
    Borchardt, B.: A pumping lemma and decidability problems for recognizable tree series. Acta Cybernet. 16(4), 509–544 (2004)zbMATHMathSciNetGoogle Scholar
  7. 7.
    B. Borchardt. The Theory of Recognizable Tree Series. PhD thesis, Technische Universität Dresden (2005)Google Scholar
  8. 8.
    Borchardt, B., Vogler, H.: Determinization of finite state weighted tree automata. J. Autom. Lang. Combin. 8(3), 417–463 (2003)zbMATHMathSciNetGoogle Scholar
  9. 9.
    Drewes, F., Högberg, J.: Learning a regular tree language from a teacher. In: Ésik, Z., Fülöp, Z. (eds.) DLT 2003. LNCS, vol. 2710, pp. 279–291. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  10. 10.
    Drewes, F., Högberg, J.: Extensions of a MAT learner for regular tree languages. In: Proc. 23rd Annual Workshop of the Swedish Artificial Intelligence Society, Umeå University, pp. 35–44 (2006)Google Scholar
  11. 11.
    Drewes, F., Högberg, J.: Query learning of regular tree languages: How to avoid dead states. Theory of Comput. Syst. 40(2), 163–185 (2007)zbMATHCrossRefGoogle Scholar
  12. 12.
    Drewes, F., Vogler, H.: Learning deterministically recognizable tree series. J. Automata, Languages and Combinatorics, (to appear, 2007)Google Scholar
  13. 13.
    Eisner, J.: Simpler and more general minimization for weighted finite-state automata. In: Human Language Technology Conf. of the North American Chapter of the Association for Computational Linguistics, pp. 64–71 (2003)Google Scholar
  14. 14.
    Gécseg, F., Steinby, M.: Tree Automata. Akadémiai Kiadó, Budapest (1984)zbMATHGoogle Scholar
  15. 15.
    Gécseg, F., Steinby, M.: Tree languages. In: Handbook of Formal Languages, ch. 1, vol. 3, pp. 1–68. Springer, Heidelberg (1997)Google Scholar
  16. 16.
    Gold, E.M.: Language identification in the limit. Inform. and Control 10(5), 447–474 (1967)CrossRefGoogle Scholar
  17. 17.
    Habrard, A., Oncina, J.: Learning multiplicity tree automata. In: Sakakibara, Y., Kobayashi, S., Sato, K., Nishino, T., Tomita, E. (eds.) ICGI 2006. LNCS (LNAI), vol. 4201, pp. 268–280. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  18. 18.
    Shapiro, E.Y.: Algorithmic Program Debugging. ACM Distinguished Dissertation. MIT Press, Cambridge (1983)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Andreas Maletti
    • 1
  1. 1.Institute of Theoretical Computer Science, Faculty of Computer Science, Technische Universität Dresden 

Personalised recommendations