Advertisement

The Syntactic Complexity of Eulerian Graphs

  • Antonios Kalampakas
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4728)

Abstract

In this paper we prove that the set of directed Eulerian graphs is not recognizable. On the other hand, the set of directed graphs with an Eulerian underlying graph is shown to be recognizable. Furthermore, we compute the syntactic complexity of this language and we compare it with that of connected graphs.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arnold, A., Dauchet, M.: Théorie des magmoides. I. RAIRO Inform. Théor. 12(3), 235–257 (1978)zbMATHMathSciNetGoogle Scholar
  2. 2.
    Arnold, A., Dauchet, M.: Théorie des magmoides. II. RAIRO Inform. Théor. 13(2), 135–154 (1979)zbMATHMathSciNetGoogle Scholar
  3. 3.
    Bell, E.T.: Exponential numbers. Amer. Math. Monthly 41, 411–419 (1934)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Bozapalidis, S., Kalampakas, A.: An Axiomatization of Graphs. Acta Informatica 41, 19–61 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Bozapalidis, S., Kalampakas, A.: Recognizability of graph and pattern languages. Acta Informatica 42, 553–581 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Engelfriet, J., Vereijken, J.J.: Context-free graph grammars and concatenation of graphs. Acta Informatica 34, 773–803 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Hotz, G.: Eine Algebraisierung des Syntheseproblems von Schaltkreisen. EIK 1, 185-205, 209-231 (1965)Google Scholar
  8. 8.
    MacLane, S.: Categories for the working mathematician. Springer, Heidelberg (1971)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Antonios Kalampakas
    • 1
  1. 1.Technical Institute of Kavala, Department of Exact Sciences, 65404, KavalaGreece

Personalised recommendations