Advertisement

Aperiodicity in Tree Automata

  • Zoltan Ésik
  • Szabolcs Iván
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4728)

Abstract

We define and compare several different notions of aperiodicity in tree automata. We also relate these notions to the cascade product and logical definability of tree languages.

Keywords

Homomorphic Image Wreath Product Atomic Formula Term Function Tree Automaton 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Almeida, J.: On pseudovarieties, varieties of languages, filters of congruences, pseudoidentities and related topics. Algebra Universalis 27, 333–350 (1990)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Bernátsky, L.: Regular expression star-freeness is PSPACE-complete. Acta Cybernetica 13, 1–21 (1997)zbMATHMathSciNetGoogle Scholar
  3. 3.
    Cho, S., Huynh, D.T.: Finite-automaton aperiodicity is PSPACE-complete. Theoretical Computer Science 88, 99–116 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Eilenberg, S.: Automata, Languages, and Machines, vol. A&B. Academic Press, London (1974)zbMATHGoogle Scholar
  5. 5.
    Ésik, Z.: Definite tree automata and their cascade compositions. Publ. Math. 48, 243–262 (1996)zbMATHGoogle Scholar
  6. 6.
    Ésik, Z.: An algebraic characterization of temporal logics on finite trees. Parts I, II, III. In: 1st International Conference on Algebraic Informatics, 2005, pp. 53–77, 79–99, 101–110, Aristotle Univ. Thessaloniki, Thessaloniki (2005)Google Scholar
  7. 7.
    Ésik, Z.: Characterizing CTL-like logics on finite trees. Theoretical Computer Science 356, 136–152 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Gécseg, F., Steinby, M.: Tree Automata. Akadémiai Kiadó, Budapest (1984)zbMATHGoogle Scholar
  9. 9.
    Grätzer, G.: Universal Algebra, 2nd edn. Springer, Heidelberg (1979)zbMATHGoogle Scholar
  10. 10.
    Heuter, U.: Definite tree languages. Bulletin of the EATCS 35, 137–142 (1988)zbMATHGoogle Scholar
  11. 11.
    Heuter, U.: First-order properties of trees, star-free expressions, and aperiodicity. RAIRO Inform. Théor. Appl. 25, 125–145 (1991)zbMATHMathSciNetGoogle Scholar
  12. 12.
    McNaughton, R., Papert, S.: Counter-free Automata. MIT Press, Cambridge, MA (1971)zbMATHGoogle Scholar
  13. 13.
    Potthoff, A.: Modulo-counting quantifiers over finite trees. Theoretical Computer Science 126, 97–112 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Steinby, M.: A theory of tree language varieties. In: Tree Automata and Languages, North-Holland, Amsterdam, pp. 57–81 (1992)Google Scholar
  15. 15.
    Steinby, M.: General varieties of tree languages. Theoretical Computer Science 205, 1–43 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Thomas, W.: Logical aspects in the study of tree languages. In: Ninth colloquium on trees in algebra and programming (Bordeaux, 1984), pp. 31–49. Cambridge Univ. Press, Cambridge (1984)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Zoltan Ésik
    • 1
    • 2
  • Szabolcs Iván
    • 1
  1. 1.Dept. of Computer Sci. Univ. SzegedHungary
  2. 2.GRLMC, Rovira i Virgili University, TarragonaSpain

Personalised recommendations