Advertisement

Recognizable Picture Languages and Polyominoes

  • Giusi Castiglione
  • Roberto Vaglica
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4728)

Abstract

We consider the problem of recognizability of some classes of polyominoes in the theory of picture languages. In particular we focus our attention on the problem posed by Matz of finding a non-recognizable picture language for which his technique for proving the non-recognizability of picture languages fails. We face the problem by studying the family of L-convex polyominoes and some closed families that are similar to the recognizable family of all polyominoes but result to be non-recognizable. Furthermore we prove that the family of L-convex polyominoes satisfies the necessary condition given by Matz for the recognizability and we conjecture that the family of L-convex polyominoes is non-recognizable.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barcucci, E., Del Lungo, A., Nivat, M., Pinzani, R.: Reconstructing convex polyominoes from horizontal and vertical projections. Theoret. Comput. Sci. 155, 321–347 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Bousquet-Mèlou, M.: A method for the enumeration of various classes of column-convex polygons. Dis. Math. 154, 1–25 (1996)zbMATHCrossRefGoogle Scholar
  3. 3.
    Castiglione, G., Restivo, A.: Reconstruction of L-convex Polyominoes. Electronic Notes in Discrete Mathematics 12 (2003)Google Scholar
  4. 4.
    Castiglione, G., Restivo, A.: Ordering and Convex Polyominoes. In: Margenstern, M. (ed.) MCU 2004. LNCS, vol. 3354, pp. 128–139. Springer, Heidelberg (2005)Google Scholar
  5. 5.
    Castiglione, G., Frosini, A., Restivo, A., Rinaldi, S.: Enumeration of L-convex Polyominoes. Theoret. Comput. Sci. 347, 336–352 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Castiglione, G., Frosini, A., Munarini, E., Restivo, A., Rinaldi, S.: Enumeration of L-convex Polyominoes, II. Bijection and area. In: FPSAC 2005, June 20–25, 2005, Taormina (2005)Google Scholar
  7. 7.
    Castiglione, G., Frosini, A., Restivo, A., Rinaldi, S.: A Tomographical Characterization of L-convex Polyominoes. In: Andrès, É., Damiand, G., Lienhardt, P. (eds.) DGCI 2005. LNCS, vol. 3429, pp. 115–125. Springer, Heidelberg (2005)Google Scholar
  8. 8.
    Castiglione, G., Frosini, A., Munarini, E., Restivo, A., Rinaldi, S.: Combinatorial aspects of L-convex polyominoes. European Journal of Combinatorics (in Press)Google Scholar
  9. 9.
    De Carli, F., Frosini, A., Rinaldi, S., Vuillon, L.: On the Tiling System Recognizability of Various Classes of Convex Polyominoes. Annals of combinatorics (to appear)Google Scholar
  10. 10.
    Del Lungo, A., Nivat, M., Pinzani, R.: The number of convex polyominoes reconstructible from their orthogonal projections. Discrete Math. 157, 65–78 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Dhar, D.: Equivalence of two-dimensional directed animal problem to a onedimensional path problem. Adv. in Appl. Math. 9, 959–962 (1988)Google Scholar
  12. 12.
    Gardner, M.: Mathematical Games. Scientific American 196, 126–134 (1957)CrossRefGoogle Scholar
  13. 13.
    Giammarresi, D., Restivo, A.: Two-dimensional languages. In: Salomaa, A., Rozemberg, G. (eds.) Handbook of Formal Languages, vol. 3, pp. 215–267. Springer, Heidelberg (1997)Google Scholar
  14. 14.
    Girault-Beauquier, D., Nivat, M.: Tiling the plane with one tile. In: Proceedings of the sixth annual symposium on Computational geometry, June 07-09, 1990, Berkley, California, United States (1990)Google Scholar
  15. 15.
    Golomb, S.W.: Checker boards and polyominoes. Amer. Math. Monthly 61, 675–682 (1954)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Golomb, S.W.: Polyominoes. Scribner, New York (1965)Google Scholar
  17. 17.
    Golomb, S.W.: Polyominoes: Puzzles, Patterns, Problems and Packing. Princeton Academic Press, London (1996)Google Scholar
  18. 18.
    Hakim, V., Nadal, J.P.: Exact result for 2D directed lattice animals on a strip of finite width. J. Phys. A: Math. 16, L213–L218 (1983)Google Scholar
  19. 19.
    Herman, G.T., Kuba, A.: Discrete Tomography: Foundations, Algorithms and Applications, Birkhauser Boston, Cambridge, MA on of convex 2D discrete sets in polynomial time. Theoret. Comput. Sci. 283, 223–242 (2002)CrossRefMathSciNetGoogle Scholar
  20. 20.
    Kuba, A., Balogh, E.: Reconstruction of convex 2D discrete sets in polynomial time. Theoret. Comput. Sci. 283, 223–242 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Matz, O.: On piecewise testable, starfree, and recognizable picture languages. In: Nivat, M. (ed.) ETAPS 1998 and FOSSACS 1998. LNCS, vol. 1378, pp. 203–210. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  22. 22.
    Reinhardt, K.: On some recognizable picture-languages. In: Brim, L., Gruska, J., Zlatuška, J. (eds.) MFCS 1998. LNCS, vol. 1450, pp. 760–770. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  23. 23.
    Reinhardt, K.: The #a = #b Pictures are Recognizable. In: Ferreira, A., Reichel, H. (eds.) STACS 2001. LNCS, vol. 2010, pp. 527–538. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  24. 24.
    Salomaa, A., Soittola, M.: Automata-theoretic aspects of formal power series. Springer, New York (1978)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Giusi Castiglione
    • 1
  • Roberto Vaglica
    • 1
  1. 1.Università di Palermo, Dipartimento di Matematica e Applicazioni, via Archirafi, 34 - 90123 PalermoItaly

Personalised recommendations