Skip to main content

Probabilistic Planning in Hybrid Probabilistic Logic Programs

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4772))

Abstract

In this paper, we present a new approach to probabilistic planning based on logic programming, by relating probabilistic planning to hybrid probabilistic logic programs with probabilistic answer set semantics [32]. We show that any probabilistic planning problem, \(\cal P\), can be translated into a hybrid probabilistic logic program whose probabilistic answer sets correspond to trajectories in \(\cal P\), with associated probabilities. We formally prove the correctness of our approach. Moreover, we show that the complexity of finding a plan for a probabilistic planning problem in our approach is NP-complete. In addition, we show that any probabilistic planning problem, \(\cal P\), can be encoded as a classical logic program with answer set semantics, whose answer sets corresponds to valid trajectories in \(\cal P\). We also show that probabilistic planning problems can be encoded as proportional satisfiability problems.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baral, C.: Knowledge representation, reasoning, and declarative problem solving. Cambridge University Press, Cambridge (2003)

    MATH  Google Scholar 

  2. Baral, C., Gelfond, M., Rushton, N.: Probabilistic reasoning with answer sets. In: Logic Programming and Non-monotonic Reasoning. Springer, Heidelberg (2004)

    Google Scholar 

  3. Boutilier, C., Dean, T., Hanks, S.: Decision-theoretic planning: structural assumptions and computational leverage. Journal of AI Research 11, 1–94 (1999)

    MATH  MathSciNet  Google Scholar 

  4. Blum, A., Furst, M.: Fast planning through planning graph analysis. Artificial Intelligence 90(1-2), 297–298 (1997)

    Article  Google Scholar 

  5. Blum, A., Langford, J.: Probabilistic planning in the Graphplan framework. In: Proc. of the 5th European Conference on Planning (1999)

    Google Scholar 

  6. Dekhtyar, A., Subrahmanian, V.S.: Hybrid probabilistic program. Journal of Logic Programming 43(3), 187–250 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  7. Dekhtyar, M., Dekhtyar, A., Subrahmanian, V.S.: Hybrid probabilistic programs: algorithms and complexity. In: Proc. of UAI Conference, pp. 160–169 (1999)

    Google Scholar 

  8. Draper, D., Hanks, S., Weld, D.: Probabilistic planning with information gathering and contingent execution. In: Proc. of the 2nd International Conference on Artificial Intelligence Planning Systems, pp. 31–37 (1994)

    Google Scholar 

  9. Eiter, T., et al.: Declarative problem solving in dlv. In: Logic Based Artificial Intelligence (2000)

    Google Scholar 

  10. Van Gelder, A., Ross, K.A., Schlipf, J.S.: The well-founded semantics for general logic programs. Journal of ACM 38(3), 620–650 (1991)

    Article  MATH  Google Scholar 

  11. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: ICSLP. MIT Press, Cambridge (1988)

    Google Scholar 

  12. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive databases. New Generation Computing 9(3-4), 363–385 (1991)

    Article  Google Scholar 

  13. Gelfond, M., Lifschitz, V.: Representing action and change by logic programs. Journal of Logic Programming 17, 301–321 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  14. Giunchiglia, E., Lierler, Y., Maratea, M.: Answer set programming based on propositional satisfiability. Journal of Automated Reasoning 36(4), 345–377 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  15. Kautz, H., Selman, B.: Pushing the envelope: planning, propositional logic, and stochastic search. In: Proc. of 13th National Conference on Artificial Intelligence (1996)

    Google Scholar 

  16. Kushmerick, N., Hanks, S., Weld, D.: An algorithm for probabilistic planning. Artificial Intelligence 76(1-2), 239–286 (1995)

    Article  Google Scholar 

  17. Lifschitz, V.: Answer set planning. In: Proceedings of ICLP (1999)

    Google Scholar 

  18. Lin, F., Zhao, Y.: ASSAT: Computing answer sets of a logic program by SAT solvers. Artificial Intelligence 157(1-2), 115–137 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  19. Lukasiewicz, T.: Probabilistic logic programming. In: 13th European Conference on Artificial Intelligence, pp. 388–392 (1998)

    Google Scholar 

  20. Littman, M., Goldsmith, J., Mundhenk, M.: The computational complexity of probabilistic planning. Journal of Artificial Intelligence Research 9, 1–36 (1998)

    MATH  MathSciNet  Google Scholar 

  21. Littman, M., Majercik, S.: Large-scale planning under uncertainty: A survey. In: NASA Workshop on Planning and Scheduling in Space (1997)

    Google Scholar 

  22. Majercik, S., Littman, M.: MAXPLAN: A new approach to probabilistic planning. In: Proc. of the 4th International Conference on Artificial Intelligence Planning, pp. 86–93 (1998)

    Google Scholar 

  23. Majercik, S., Littman, M.: Contingent planning under uncertainty via stochastic satisfiability. Artificial Intelligence 147(1-2), 119–162 (2003)

    MATH  MathSciNet  Google Scholar 

  24. Ng, R.T., Subrahmanian, V.S.: Probabilistic logic programming. Information & Computation 101(2) (1992)

    Google Scholar 

  25. Ng, R.T., Subrahmanian, V.S.: Stable semantics for probabilistic deductive databases. Information & Computation 110(1) (1994)

    Google Scholar 

  26. Niemela, I., Simons, P.: Efficient implementation of the well-founded and stable model semantics. In: Joint International Conference and Symposium on Logic Programming, pp. 289–303 (1996)

    Google Scholar 

  27. Poole, D.: The Independent choice logic for modelling multiple agents under uncertainty. Artificial Intelligence 94(1-2), 7–56 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  28. Saad, E.: Incomplete knowlege in hybrid probabilistic logic programs. In: Fisher, M., van der Hoek, W., Konev, B., Lisitsa, A. (eds.) JELIA 2006. LNCS (LNAI), vol. 4160, Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  29. Saad, E.: Towards the computation of the stable probabilistic model semantics. In: Freksa, C., Kohlhase, M., Schill, K. (eds.) KI 2006. LNCS (LNAI), vol. 4314, Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  30. Saad, E.: A logical approach to qualitative and quantitative reasoning. In: 9th European Conference on Symbolic and Quantitative Approaches to Reasoning with Uncertainty (ECSQARU 2007) (2007)

    Google Scholar 

  31. Saad, E., Pontelli, E.: Towards a more practical hybrid probabilistic logic programming framework. Practical Aspects of Declarative Languages (2005)

    Google Scholar 

  32. Saad, E., Pontelli, E.: Hybrid probabilistic logic programs with non-monotonic negation. In: International Conference of Logic Programming, Springer, Heidelberg (2005)

    Google Scholar 

  33. Saad, E., Pontelli, E.: A new approach to hybrid probabilistic logic programs. Annals of Mathematics and Artificial Intelligence Journal 48(3-4), 187–243 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  34. Son, T., Baral, C., Nam, T., McIlraith, S.: Domain-dependent knowledge in answer set planning. ACM Transactions on Computational Logic 7(4), 613–657 (2006)

    Article  MathSciNet  Google Scholar 

  35. Subrahmanian, V.S., Zaniolo, C.: Relating stable models and AI planning domains. In: International Conference of Logic Programming, pp. 233–247 (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Henri Prade V. S. Subrahmanian

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Saad, E. (2007). Probabilistic Planning in Hybrid Probabilistic Logic Programs. In: Prade, H., Subrahmanian, V.S. (eds) Scalable Uncertainty Management. SUM 2007. Lecture Notes in Computer Science(), vol 4772. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75410-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-75410-7_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-75407-7

  • Online ISBN: 978-3-540-75410-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics