Skip to main content

Part of the book series: Studies in Computational Intelligence ((SCI,volume 83))

Two unsupervised context-sensitive change detection techniques, one based on Hopfield type neural network and the other based on self-organizing feature map neural network, for remote sensing images have been proposed in this chapter. In the presented Hopfield network, each neuron corresponds to a pixel in the difference image and is assumed to be connected to all its neighbors. An energy function is defined to represent the overall status of the network. Each neuron is assigned a status value depending on an initialization threshold and updated iteratively until converges. On the other hand, in the self-organizing feature map model, number of neurons in the output layer is equal to the number of pixels in the difference image and the number of neurons in the input layer is equal to the dimension of the input patterns. The network is updated depending on some threshold. For both the cases, at convergence, the output statuses of neurons represent a change detection map. Experimental results confirm the effectiveness of the proposed approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Singh. Digital change detection techniques using remotely sensed data. Int. J. Remote Sensing, 10(6):989-1003, 1989.

    Article  Google Scholar 

  2. J. A. Richards and X. Jia. Remote Sensing Digital Image Analysis. 4th ed. Berlin: Springer-Verlag, 2006.

    Google Scholar 

  3. J. Cihlar, T. J. Pultz and A. L. Gray. Change detection with synthetic aperture radar. Int. J. Remote Sensing, 13(3):401-414, 1992.

    Article  Google Scholar 

  4. L. Bruzzone and S. B. Serpico. An iterative technique for the detection of land-cover transitions in multitemporal remote-sensing images. IEEE Trans. Geosci. Remote Sensing, 35:858-867, 1997.

    Article  Google Scholar 

  5. L. Bruzzone and D. F. Prieto. An adaptive parcel-based technique for unsupervised change detection. Int. J. Remote Sensing, 21(4):817-822, 2000.

    Article  Google Scholar 

  6. T. Hame, I. Heiler and J. S. Miguel-Ayanz. An unsupervised change detection and recognition system for forestry. Int. J. Remote Sensing, 19(6):1079-1099, 1998.

    Article  Google Scholar 

  7. P. S. Chavez Jr. and D. J. MacKinnon. Automatic detection of vegetation changes in the southwestern United States using remotely sensed images. Photogram. Eng. Remote Sensing, 60(5):1285-1294, 1994.

    Google Scholar 

  8. K. R. Merril and L. Jiajun. A comparison of four algorithms for change detection in an urban environment. Remote Sensing Environ., 63:95-100, 1998.

    Article  Google Scholar 

  9. S. Gopal and C. Woodcock. Remote sensing of forest change using artificial neural networks. IEEE Trans. Geosci. Remote Sensing, 34(2):398-404, 1996.

    Article  Google Scholar 

  10. F. Yuan, K. E. Sawaya, B. C. Loeffelholz and M. E. Bauer. Land cover classifi-cation and change analysis of the Twin cities (Minnesota) metropolitan area by multitemporal Landsat remote sensing. Remote Sensing Environ., 98:317-328, 2005.

    Article  Google Scholar 

  11. M. Alberti, R. Weeks and S. Coe. Urban land cover change analysis in Central Puget Sound. Photogram. Eng. Remote Sensing, 70(9):1043-1052, 2004.

    Google Scholar 

  12. S. Ghosh, S. Patra, M. Kothari and A. Ghosh. Supervised change detection in multi-temporal remote-sensing images using multi-layer perceptron. ANVESA: J. Fakir Mohan Univ., 1(2):48-60, 2005.

    Google Scholar 

  13. L. Bruzzone and D. F. Prieto. Automatic analysis of the difference image for unsupervised change detection. IEEE Trans. Geosci. Remote Sensing, 38(3):1171-1182, 2000.

    Article  Google Scholar 

  14. R. Wiemker. An iterative spectral-spatial Bayesian labeling approach for unsu-pervised robust change detection on remotely sensed multispectral imagery. In Proceedings of CAIP, pages 263-270, 1997.

    Google Scholar 

  15. M. J. Canty and A. A. Nielsen. Visualization and unsupervised classification of changes in multispectral satellite imagery. Int. J. Remote Sensing, 27(18):3961-3975, 2006.

    Article  Google Scholar 

  16. M. Kothari, S. Ghosh and A. Ghosh. Aggregation pheromone density based change detection in remotely sensed images. In Sixth International Confer-ence on Advances in Pattern Recognition (ICAPR-2007), Kolkata, India. World Scientific Publishers, pages 193-197, 2007.

    Google Scholar 

  17. S. Patra, S. Ghosh and A. Ghosh. Unsupervised change detection in remote-sensing images using one-dimensional self-organizing feature map neural net-work. In Ninth International Conference Conf. on Information Technology (ICIT-2006), Bhubaneswar, India, pages 141-142. IEEE Computer Society Press, 2006.

    Google Scholar 

  18. F. Melgani, G. Moser and S. B. Serpico. Unsupervised change-detection methods for remote-sensing data. Opt. Eng., 41:3288-3297, 2002.

    Article  Google Scholar 

  19. T. Kasetkasem and P. K. Varshney. An image change-detection algorithm based on Markov random field models. IEEE Trans. Geosci. Remote Sensing, 40(8):1815-1823, 2002.

    Article  Google Scholar 

  20. L. Bruzzone and D. F. Prieto. An adaptive semiparametric and context-based approach to unsupervised change detection in multitemporal remote-sensing images. IEEE Trans. Image Process., 11(4):452-466, 2002.

    Article  Google Scholar 

  21. Y. Bazi, L. Bruzzone and F. Melgani. An unsupervised approach based on the generalized Gaussian model to automatic change detection in multitemporal SAR images. IEEE Trans. Geosci. Remote Sensing, 43(4):874-887, 2005.

    Article  Google Scholar 

  22. S. Haykin. Neural Networks: A Comprehensive Foundation. Pearson Education, Fourth Indian Reprint, 2003.

    Google Scholar 

  23. S. Ghosh, L. Bruzzone, S. Patra, F. Bovolo and A. Ghosh. A context-aensitive technique for unsupervised change detection based on Hopfield type neural networks. IEEE Trans. Geosci. Remote Sensing, 45(3):778-789, 2007.

    Article  Google Scholar 

  24. S. Patra, S. Ghosh and A. Ghosh. Unsupervised change detection in remote-sensing images using modified self-organizing feature map neural network. In Internationa Conference on Computing: Theory and Applications (ICCTA-2007), Kolkata, India. IEEE Computer Society Press, pages 716-720, 2007.

    Google Scholar 

  25. T. Fung. An assessment of TM imagery for land-cover change detection. IEEE Trans. Geosci. Remote Sensing, 28:681-684, 1990.

    Article  Google Scholar 

  26. D. M. Muchoney and B. N. Haack. Change detection for monitoring forest defoliation. Photogram. Eng. Remote Sensing, 60:1243-1251, 1994.

    Google Scholar 

  27. J. R. G. Townshend and C. O. Justice. Spatial variability of images and the monitoring of changes in the normalized difference vegetation index. Int. J. Remote Sensing, 16(12):2187-2195, 1995.

    Article  Google Scholar 

  28. S. V. B. Aiyer, M. Niranjan and F. Fallside. A theoretical investigation into the performance of the Hopfield model. IEEE Trans. Neural Netw., 1(2):204-215, 1990.

    Article  Google Scholar 

  29. J. J. Hopfield. Neural networks and physical systems with emergent collective computational abilities. Proc. Natl Acad. Sci. USA, 79:2554-2558, 1982.

    Article  MathSciNet  Google Scholar 

  30. J. J. Hopfield. Neurons with graded response have collective computational prop-erties like those of two state neurons. Proc. Natl Acad. Sci. USA, 81:3088-3092, 1984.

    Article  Google Scholar 

  31. A. Ghosh, N. R. Pal and S. K. Pal. Object background classification using Hopfield type Neural Network, Int. J. Pattern Recognit. Artif. Intell., 6(5):989-1008, 1992.

    Article  Google Scholar 

  32. L. A. Zadeh. Fuzzy sets. Information Control, 8:338-353, 1965.

    MATH  MathSciNet  Google Scholar 

  33. S. M. Ross. Introduction to Probability and Statistics for Engineers and Scientists. New York: Wiley, 1987.

    MATH  Google Scholar 

  34. A. Rosenfeld and P. De La Torre. Histogram concavity analysis as an aid in threshold selection. IEEE Trans. SMC, 13(3):231-235, 1983.

    Google Scholar 

  35. T. Kohonen. Self-organized formation of topologically correct feature maps. Biol. Cybernet., 43:59-69, 1982.

    Article  MATH  MathSciNet  Google Scholar 

  36. T. Kohonen. Self-Organizing Maps. 2nd edn. Berlin: Springer-Verlag, 1997.

    MATH  Google Scholar 

  37. Z.-P. Lo, Y. Yu and B. Bavarian. Analysis of the convergence properties of topology preserving neural networks. IEEE Trans. Neural Netw., 4:207-220, 1993.

    Article  Google Scholar 

  38. A. Ghosh and S. K. Pal. Neural network, self-organization and object extraction. Pattern Recognit. Lett., 13:387-397, 1992.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ghosh, S., Patra, S., Ghosh, A. (2008). A Neural Approach to Unsupervised Change Detection of Remote-Sensing Images. In: Prasad, B., Prasanna, S.R.M. (eds) Speech, Audio, Image and Biomedical Signal Processing using Neural Networks. Studies in Computational Intelligence, vol 83. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75398-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-75398-8_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-75397-1

  • Online ISBN: 978-3-540-75398-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics