Skip to main content

Cue and Goal Encoding in Rodents: A Source of Inspiration for Robotics?

  • Chapter
Robotics and Cognitive Approaches to Spatial Mapping

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 38))

  • 2488 Accesses

Abstract

To navigate in their environment, rodents are able to rely on a variety of behavioral strategies. The most flexible strategies result from their ability to form spatial representations that encode information about spatial cues and about important places (nest, goals, etc). In the present chapter, we address the issues of cue and place encoding in the brain brain and suggest that they are crucial processes for behavioral flexibility and adaptation to environmental changes. First, it is suggested that, due to a different spatial distribution (distant vs. nearby) or nature (allothetic allothetic vs. idiothetic) of spatial cues, animals use and have to coordinate the use of multiple spatial reference frames. This involves activation of various brain regions including the hippocampus and neocortical areas. In particular, location-specifc activity of hippocampal neurons (place cells) place cell has been shown to be controlled by different reference frames. Second, we present new data suggesting that activity of prefrontal cortex neurons reflects goal encoding. It is concluded that the knowledge of these mechanisms in animals may be a source of inspiration to improve the adaptive capacities of navigating robots.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Banquet, J.-P., Gaussier, P., Quoy, M., Revel, A., Burnod, Y.: Cortico-hippocampal maps and navigation strategies in robots and rodents. In: Hallan, B., Floreano, D., Hallam, J., Hallam, B., Hages, G., Meyer, J.-A. (eds.) From animals to animats, vol. 7, pp. 141–150. MIT press, Boston (2002)

    Google Scholar 

  2. Benhamou, S., Poucet, B.: Landmark use by navigating rats (rattus norvegicus) contrasting geometric and featural information. J. Comp. Psychol. 112, 317–322 (1998)

    Article  Google Scholar 

  3. Best, P.J., White, A.M., Minai, A.: Spatial processing in the brain: the activity of hippocampal place cells. Ann. Rev. Neurosci. 24, 459–486 (2001)

    Article  Google Scholar 

  4. Breese, C.R., Hampson, R.E., Deadwyler, S.A.: Hippocampal place cells: stereotypy and plasticity. J. Neurosci. 9, 1097–1111 (1989)

    Google Scholar 

  5. Brown, J.E., Skaggs, W.E.: Concordant and discordant coding of spatial location in populations of hippocampal CA1 pyramidal cells. J. Neurophysiol. 88, 1605–1613 (2002)

    Google Scholar 

  6. Bureš, J., Fenton, A.A., Yu, K., Zinyuk, L.: Place cells and place navigation. Proc. Natl. Acad. Sci. 94, 343–350 (1997)

    Article  Google Scholar 

  7. Burgess, N., O’Keefe, J.: Spatial Models of the Hippocampus. In: Arbib, M.A. (ed.) The Handbook of Brain Theory and Neural Networks, 2nd edn., pp. 468–472. MIT press, Cambridge (2002)

    Google Scholar 

  8. Burgess, N., O’Keefe, J.: Neural representations in human spatial memory. Trends Cogn. Sci. 7, 517–519 (2003)

    Article  Google Scholar 

  9. Cardinal, R.N., Parkinson, J.A., Hall, J., Everitt, B.J.: Emotion and motivation: the role of the amygdala, ventral striatum, and prefrontal cortex. Neurosci. Biobehav. Rev. 26, 321–352 (2002)

    Article  Google Scholar 

  10. Cressant, A., Muller, R.U., Poucet, B.: Failure of centrally placed objects to control the firing fields of hippocampal place cells. J. Neurosci. 17, 2532–2542 (1997)

    Google Scholar 

  11. Cressant, A., Muller, R.U., Poucet, B.: Further study of the control of place cell firing by intra-apparatus objects. Hippocampus 9, 423–431 (1999)

    Article  Google Scholar 

  12. Dalley, J.W., Cardinal, R.N., Robbins, T.W.: Prefrontal executive and cognitive functions in rodents: neural and neurochemical substrates. Neurosci. Biobehav. Rev. 28, 771–784 (2004)

    Article  Google Scholar 

  13. Eichenbaum, H., Stewart, C., Morris, R.G.: Hippocampal representation in place learning. J. Neurosci. 10, 3531–3542 (1990)

    Google Scholar 

  14. Etienne, A.S., Jeffery, K.J.: Path integration in mammals. Hippocampus 14, 180–192 (2004)

    Article  Google Scholar 

  15. Fenton, A.A., Stuchlik, A., Kaminsky, Y., Zahálka, A., Bureš, J.: Place avoidance by path integration is only accurate for about 7 m without useful visual and substratal cues. Soc. Neurosci. Abst. 24, 1685 (1998)

    Google Scholar 

  16. Fenton, A.A., Wesierska, M., Kaminsky, Y., Bureš, J.: Both here and there: simultaneous expression of autonomous spatial memories in rats. Proc. Natl. Acad. Sci. 95, 11493–11498 (1998)

    Article  Google Scholar 

  17. Ferino, F., Thierry, A.M., Glowinski, J.: Anatomical and electrophysiological evidence for a direct projection from Ammon’s horn to the medial prefrontal cortex in the rat. Exp. Brain Res. 65, 421–426 (1987)

    Article  Google Scholar 

  18. Filliat, D., Meyer, J.-A.: Map-based navigation in mobile robots. I. A review of localization strategies. J. Cog. Syst. Res. 4, 243–282 (2003)

    Article  Google Scholar 

  19. Gaussier, P., Revel, A., Banquet, J.-P., Babeau, V.: From view cells and place cells to cognitive map learning: processing stages of the hippocampal system. Biol. Cybern. 86, 16–28 (2002)

    Article  Google Scholar 

  20. Gothard, K.M., Skaggs, W.E., McNaughton, B.L.: Dynamics of mismatch correction in the hippocampal ensemble code for space: interaction between path integration and environmental cues. J. Neurosci. 16, 8027–8040 (1996)

    Google Scholar 

  21. Gothard, K.M., Skaggs, W.E., Moore, K.M., McNaughton, B.L.: Binding of hippocampal CA1 neural activity to multiple reference frames in a landmark-based navigation task. J. Neurosci. 16, 823–835 (1996)

    Google Scholar 

  22. Gould-Beierle, K.L., Kamil, A.C.: The use of local and global cues by Clarck nutcrackers, Nucifraga Columbiana. Anim. Behav. 52, 519–528 (1996)

    Article  Google Scholar 

  23. Hok, V., Save, E., Lenck-Santini, P.-P., Poucet, B.: Coding for spatial goals in the prelimbic/infralimbic area of the rat frontal cortex. Proc. Natl. Acad. Sci. 102, 4602–4607 (2005)

    Article  Google Scholar 

  24. Hollup, S.A., Molden, S., Donnet, J.G., Moser, M.-B., Moser, E.I.: Accumulation of hippocampal place fields at the goal location in an annular watermaze task. J. Neurosci. 21, 1635–1644 (2001)

    Google Scholar 

  25. Jeffery, K.J., O’Keefe, J.: Learned interaction of visual and idiothetic cues in the control of place field orientation. Exp. Brain Res. 127, 151–161 (1999)

    Article  Google Scholar 

  26. Knierim, J.J.: Dynamic interactions between local surface cues, distal landmarks, and intrinsic circuitry in hippocampal place cells. J. Neurosci. 22, 6254–6264 (2002)

    Google Scholar 

  27. Knierim, J.J., Kudrimoti, H.S., McNaughton, B.L.: Interactions between idiothetic and external landmarks in the control of place cells and head direction cells. J. Neurophysiol. 80, 425–446 (1998)

    Google Scholar 

  28. Lavenex, P., Schenk, F.: Olfactory cues potentiate learning of distant visuospatial information. Neurobiol. Learn Mem. 68, 140–153 (1997)

    Article  Google Scholar 

  29. Lenck-Santini, P.-P., Muller, R.U., Save, E., Poucet, B.: Relationships between place cell firing fields and navigational decisions by rats. J. Neurosci. 22, 9035–9047 (2002)

    Google Scholar 

  30. Lenck-Santini, P.-P., Save, E., Poucet, B.: Evidence for a relationship between place-cell spatial firing and spatial memory performance. Hippocampus 11, 377–390 (2001)

    Article  Google Scholar 

  31. Lever, C., Wills, T., Cacucci, F., Burgess, N., O’Keefe, J.: Long-term plasticity in hippocampal place-cell representation of environmental geometry. Nature 416, 90–94 (2002)

    Article  Google Scholar 

  32. McNaughton, B.L., Barnes, C.A., Gerrard, J.L., Gothard, K., Jung, M.W., Knierim, J.J., Kudrimoti, H., Qin, Y., Skaggs, W.E., Suster, M., Weaver, K.L.: Deciphering the hippocampal polyglot: the hippocampus as a path integration system. J. Exp. Biol. 199, 173–185 (1996)

    Google Scholar 

  33. Meyer, J.-A., Filliat, D.: Map-based navigation in mobile robots. II. A review of map-learning and path planning strategies. J. Cog. Syst. Res. 4, 283–317 (2003)

    Article  Google Scholar 

  34. Morris, R.G.M.: Spatial localization does not require the presence of local cues. Learn Motiv. 12, 239–260 (1981)

    Article  Google Scholar 

  35. Muller, R.U.: A quarter of a century of place cells. Neuron 17, 813–822 (1996)

    Article  Google Scholar 

  36. Muller, R.U., Kubie, J.L.: The effects of changes in the environment on the spatial firing of hippocampal complex-spike cells. J. Neurosci. 7, 1951–1968 (1987)

    Google Scholar 

  37. Muller, R.U., Kubie, J.L., Ranck, J.B.: Spatial firing pattern of hippocampal complex-spike cells in a fixed environment. J. Neurosci. 7, 1935–1950 (1987)

    Google Scholar 

  38. O’Keefe, J.: Hippocampus function: does the working memory hypothesis work? Should we retire the cognitive map theory? Behav. Brain Sci. 2, 339–343 (1979)

    Google Scholar 

  39. O’Keefe, J., Dostrovsky, J.: The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely moving rat. Brain Res. 34, 171–175 (1971)

    Article  Google Scholar 

  40. O’Keefe, J., Nadel, L.: The hippocampus as a cognitive map. Oxford University Press, London (1978)

    Google Scholar 

  41. Parron, C., Poucet, B., Save, E.: Entorhinal cortex lesions impairs the use of distal but not proximal landmarks during navigation in the rat. Behav. Brain Res. 154, 345–352 (2004)

    Article  Google Scholar 

  42. Paz-Villagràn, V., Save, E., Poucet, B.: Coding of separate and connected spatial contexts by place cells. Eur. J. Neurosci. 20, 1379–1390 (2004)

    Article  Google Scholar 

  43. Poucet, B.: Searching for spatial unit firing in the prelimbic area of the rat medial prefrontal cortex. Behav. Brain Res. 84, 151–159 (1997)

    Article  Google Scholar 

  44. Poucet, B., Chapuis, N., Durup, M., Thinus-Blanc, C.: A study of exploratory behavior as an index of spatial knowledge in hamsters. Anim. Learn. Behav. 14, 93–100 (1986)

    Google Scholar 

  45. Poucet, B., Lenck-Santini, P.-P., Hok, V., Save, E., Banquet, J.-P., Gaussier, P., Muller, R.U.: Spatial navigation and hippocampal place cell firing: the problem of goal encoding. Rev. Neurosci. 15, 87–109 (2004)

    Google Scholar 

  46. Poucet, B., Lenck-Santini, P.-P., Save, E.: Drawing parallels between the behavioural and neural properties of navigation. In: Jeffery, K.J. (ed.) The neurobiology of spatial behaviour, pp. 187–198. Oxford University Press, Oxford (2003)

    Google Scholar 

  47. Quirk, G.J., Muller, R.U., Kubie, J.L.: The firing of hippocampal place cells in the dark depends on the rat’s recent experience. J. Neurosci. 10, 2008–2017 (1990)

    Google Scholar 

  48. Renaudineau, S., Poucet, B., Save, E.: Effects of a conflict between proximal objects and distal cues on place cell activity (unpublished data)

    Google Scholar 

  49. Rossier, J., Schenk, F., Kaminsky, Y., Bureš, J.: The place preference task: a new tool for studying the relation between behavior and place cell activity in rats. Behav. Neurosci. 114, 273–284 (2000)

    Article  Google Scholar 

  50. Rotenberg, A., Muller, R.U.: Variable coupling to a continuous viewed stimulus: evidence that the hippocampus acts as a perceptual system. Phil. Trans. R Soc. Lond. B 352, 1505–1513 (1997)

    Article  Google Scholar 

  51. Save, E., Cressant, A., Thinus-Blanc, C., Poucet, B.: Spatial firing of hippocampal place cells in blind rats. J. Neurosci. 18, 1818–1826 (1998)

    Google Scholar 

  52. Save, E., Nerad, L., Poucet, B.: Contribution of multiple sensory information to place field stability in hippocampal place cells. Hippocampus 10, 64–76 (2000)

    Article  Google Scholar 

  53. Save, E., Paz-Villagràn, V., Alexinsky, T., Poucet, B.: Functional interaction between the parietal cortex and hippocampal place cell firing in the rat. Eur. J. Neurosci. 21, 522–530 (2005)

    Article  Google Scholar 

  54. Save, E., Poucet, B.: Hippocampal-parietal cortical interactions in spatial cognition. Hippocampus 10, 491–499 (2000a)

    Article  Google Scholar 

  55. Save, E., Poucet, B.: Involvement of the hippocampus and associative parietal cortex in the use of proximal and distal landmarks for navigation. Behav. Brain Res. 109, 195–206 (2000b)

    Article  Google Scholar 

  56. Save, E., Poucet, B., Foreman, N., Buhot, M.C.: Object exploration and reactions to spatial and non-spatial changes in hooded rats following damage to parietal cortex or hippocampal formation. Behav. Neurosci. 106, 447–456 (1992)

    Article  Google Scholar 

  57. Shapiro, M.L., Tanila, H., Eichenbaum, H.: Cues that hippocampal place cells encode: dynamic and hierarchical representation of local and distal stimuli. Hippocampus 7, 624–642 (1997)

    Article  Google Scholar 

  58. Sharp, P.E., Blair, H.T., Etkin, D., Tzanetos, D.B.: influences of vestibular and visual motion information on the spatial firing pattern of hippocampal place cells. J. Neurosci. 15, 173–189 (1995)

    Google Scholar 

  59. Sutherland, R.J., Dyck, R.H.: Place navigation by rats. Can J. psychol. 38, 322–347 (1984)

    Google Scholar 

  60. Suzuki, S., Augerinos, G., Black, A.H.: Stimulus control of spatial behavior in the eight-arm maze in rats. Learn Motiv. 11, 1–18 (1980)

    Article  Google Scholar 

  61. Tanila, H., Shapiro, M.L., Eichenbaum, H.: Discordance of spatial representation in ensembles of hippocampal place cells. Hippocampus 7, 613–623 (1997)

    Article  Google Scholar 

  62. Thinus-Blanc, C., Bouzouba, L., Chaix, K., Chapuis, N., Durup, M., Poucet, B.: A study of spatial parameters encoded during exploration in hamsters. J. Exp. Psychol: Anim. Behav. Proc. 13, 418–427 (1987)

    Article  Google Scholar 

  63. Tolman, E.C.: Cognitive maps in rats and men. Psychol. Rev. 55, 189–208 (1948)

    Article  Google Scholar 

  64. Touretzky, D.S., Redish, A.D.: Theory of rodent navigation based on interacting representations of space. Hippocampus 6, 247–270 (1996)

    Article  Google Scholar 

  65. Trullier, O., Wiener, S.I., Berthoz, A., Meyer, J.-A.: Biologically artificial navigation systems: review and prospects. Prog. Neurobiol. 51, 483–544 (1997)

    Article  Google Scholar 

  66. Whishaw, I.Q.: Spatial mapping takes time. Hippocampus 8, 122–130 (1998)

    Article  Google Scholar 

  67. Wiener, S.I., Korshunov, V.A., Garcia, R., Berthoz, A.: Inertial substratal and landmark cue control of hippocampal CA1 place cell activity. Eur. J. Neurosci. 7, 2206–2219 (1995)

    Article  Google Scholar 

  68. Zinyuk, L., Kubik, S., Kaminsky, Y., Fenton, A.A., Bureš, J.: Understanding hippocampal activity by using purposeful behavior: place navigation induce vs. place cell discharge in both task-relevant and task-irrelevant spatial reference frames. Proc. Natl. Acad. Sci. 97, 3771–3776 (2000)

    Article  Google Scholar 

Download references

Authors

Editor information

Margaret E. Jefferies Wai-Kiang Yeap

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Save, E., Hok, V., Renaudineau, S., Parron, C., Poucet, B. (2007). Cue and Goal Encoding in Rodents: A Source of Inspiration for Robotics?. In: Jefferies, M.E., Yeap, WK. (eds) Robotics and Cognitive Approaches to Spatial Mapping. Springer Tracts in Advanced Robotics, vol 38. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75388-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-75388-9_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-75386-5

  • Online ISBN: 978-3-540-75388-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics