Skip to main content

Stochastic Clock and Financial Markets

  • Chapter
Aspects of Mathematical Finance

Brownian motion played a central role throughout the twentieth century in probability theory. The same statement is even truer in finance, with the introduction in 1900 by the French mathematician Louis Bachelier of an arithmetic Brownian motion (or a version of it) to represent stock price dynamics. This process was ‘pragmatically’ transformed by Samuelson in ([48, 49]; see also [50]) into a geometric Brownian motion ensuring the positivity of stock prices.

More recently the elegant martingale property under an equivalent probability measure derived from the No Arbitrage assumption combined with Monroe’s theorem on the representation of semi-martingales have led to write asset prices as time-changed Brownian motion. Independently, Clark [14] had the original idea of writing cotton Future prices as subordinated processes, with Brownian motion as the driving process. Over the last few years, time changes have been used to account for different speeds in market activity in relation to news arrival as the stochastic clock goes faster during periods of intense trading. They have also allowed us to uncover new classes of processes in asset price modelling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.95
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 49.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ané, T. and Geman, H. (2000) Order Flow, Transaction Clock and Normality of Asset Returns, Journal of Finance 55, 2259–2285

    Article  Google Scholar 

  2. Artzner, P. and Delbaen, F. (1989) Term Structure of Interest Rates: The Martingale Approach, Advances in Applied Mathematics 10, 95–129

    Article  MATH  MathSciNet  Google Scholar 

  3. Bachelier, L. (1900) Théorie de la spéculation, Annales Scientifiques de l’Ecole Normale Supérieure 17, 21–86

    MathSciNet  Google Scholar 

  4. Bakshi, G.S., Cao, C. and Chen, Z.W. (1997) Empirical Performance of Alternative Option Pricing Models, Journal of Finance 52, 2003–2049

    Article  Google Scholar 

  5. Barndorff-Nielsen, O.E. (1998) Processes of Normal Inverse Gaussian Type, Finance and Stochastics 2, 41–68

    Article  MATH  MathSciNet  Google Scholar 

  6. Barndorff-Nielsen, O.E. and Halgreen, O. (1977) Infinite Divisibility of the Hyperbolic and Generalized Inverse Gaussian Distributions, Zeitschrift für Wahrscheinlichkeitstheorie 38, 309–312

    Article  MathSciNet  Google Scholar 

  7. Bates, D. (1996) Jumps and Stochastic Volatility: Exchange Rate Processes in Deutschemark Options, Review of Financial Studies 9, 69–108

    Article  Google Scholar 

  8. Bick, A. (1995) Quadratic-Variation-Based Dynamic Strategies, Management Science 41(4), 722–732

    Article  MATH  Google Scholar 

  9. Black, F. and Scholes, M. (1973) The Pricing of Options and Corporate Liabilities, Journal of Political Economy 81, 637–659

    Article  Google Scholar 

  10. Bochner, S. (1955) Harmonic Analysis and the Theory of Probability, University of California Press, Berkeley

    MATH  Google Scholar 

  11. Carr, P., Geman, H., Madan, D. and Yor, M. (2002) The Fine Structure of Asset Returns: An Empirical Investigation, Journal of Business 75, 305–332

    Article  Google Scholar 

  12. Carr, P., Geman, H., Madan, D. and Yor, M. (2003) Stochastic Volatility for Lévy Processes, Mathematical Finance 13, 345–382

    Article  MATH  MathSciNet  Google Scholar 

  13. Carr, P., Geman, H., Madan, D. and Yor, M. (2005) Pricing Options on Realized Variance, Finance and Stochastics 4(3), 453–478

    Article  MathSciNet  Google Scholar 

  14. Clark, P. (1973) A Subordinated Stochastic Process with Finite Variance for Speculative Prices, Econometrica 41, 135–156

    Article  MATH  MathSciNet  Google Scholar 

  15. Cornell, B. (1983) Money Supply Announcements and Interest Rates: Another View, Journal of Business 56(1), 1–23

    Article  Google Scholar 

  16. Dalang, R.C., Morton, A. and Willinger, W. (1990) Equivalent Martingale Measures and No-arbitrage in Stochastic Securities Market Models, Stochastics 29(2), 185–201

    MATH  MathSciNet  Google Scholar 

  17. Dambis, K.E. (1965) On the Decomposition of Continuous Martingales Theory of Probability and its Applications 10, 401–410

    Article  MATH  MathSciNet  Google Scholar 

  18. Delbaen, F. and Schachermayer, W. (1994) A General Version of the Fundamental Theorem of Asset Pricing, Mathematische Annalen 300, 465–520

    Article  MathSciNet  Google Scholar 

  19. Dubins, L. and Schwarz, G. (1965) On Continuous Martingales, Proceedings of the National Academy of Sciences USA 53, 913–916

    Article  MATH  MathSciNet  Google Scholar 

  20. Dyl, E. and Maberly, E. (1986) The Weekly Pattern in Stock Index Futures: A Further Note, Journal of Finance, 1149–1152

    Google Scholar 

  21. Eydeland, A. and Geman, H. (1995) Asian Options Revisited: Inverting the Laplace Transform, RISK, March

    Google Scholar 

  22. Feller, W. (1964) An Introduction to Probability Theory and its Applications. Vol. 2, Wiley, New York

    MATH  Google Scholar 

  23. French, K. and Roll, R. (1986) Stock Return Variance: The Arrival of Information and the Reaction of Traders, Journal of Financial Economics 17, 5–26

    Article  Google Scholar 

  24. French, K., Schwert, G. and Stambaugh, R. (1987) Expected Stock Returns and Volatility Journal of Financial Economics 19, 3–30

    Article  Google Scholar 

  25. Gallant, A.R., Rossi, P.E. and Tauchen, G. (1992) Stock Prices and Volume, Review of Financial Studies 5, 199–242

    Article  Google Scholar 

  26. Geman, H. (1989) The Importance of the Forward Neutral Probability Measure for Stochastic Interest Rates, ESSEC Working Paper

    Google Scholar 

  27. Geman, H. (2002) Pure Jump Lévy Processes for Asset Price Modelling, Journal of Banking and Finance 26(??), 1297–1316

    Article  Google Scholar 

  28. Geman, H., Madan, D. and Yor, M. (2001) Time Changes for Lévy Processes, Mathematical Finance 11, 79–96

    Article  MATH  MathSciNet  Google Scholar 

  29. Geman, H. and Schneeweis, T. (1991) Trading Time–Non Trading Time Effects on French Futures Markets, Accounting and Financial Globalization. Quorum, New York

    Google Scholar 

  30. Geman, H. and Yor, M. (1993) Bessel Processes, Asian Options and Perpetuities, Mathematical Finance 4(3), 349–375

    Article  MathSciNet  Google Scholar 

  31. Gouriéroux, C. and Laurent, J.P. (1998) Mean-Variance Hedging and Numéraire, Mathematical Finance 8(3), 179–200

    Article  MATH  MathSciNet  Google Scholar 

  32. Harris, L. (1986) Cross-Security Tests of the Mixture of Distributions Hypothesis, Journal of Finance and Quantitative Analysis 21, 39–46

    Article  Google Scholar 

  33. Harrison, J.M. and Kreps, D. (1979) Martingales and Arbitrage in Multiperiod Securities Market, Journal of Economic Theory 20, 381–408

    Article  MATH  MathSciNet  Google Scholar 

  34. Harrison, J.M. and Pliska, S. (1981) Martingales and Stochastic Integrals in the Theory of Continuous Trading, Stochastic Processes and their Applications 11, 381–408

    Article  MathSciNet  Google Scholar 

  35. Hull, J. and White, J. (1987) The Pricing of Options on Assets with Stochastic Volatilities, Journal of Finance 42(2), 281–300

    Article  Google Scholar 

  36. Itô, K. and McKean, H.P. (1965) Diffusion Processes and Their Sample Paths. Springer, Berlin Heidelberg New York

    MATH  Google Scholar 

  37. Jones, C., Kaul, G. and Lipton, M.L. (1994) Transactions, Volume and Volatility, Review of Financial Studies 7, 631–651

    Article  Google Scholar 

  38. Karpoff, J. (1987) The Relation Between Price Changes and Trading Volume: A survey, Journal of Financial and Quantitative Analysis 22, 109–126

    Article  Google Scholar 

  39. Lamperti, J. (1972) Semi-Stable Markov Processes, Zeitschrift für Wahrscheinlichkeitstheorie 205–255

    Google Scholar 

  40. Mandelbrot, B. (1963) The Variation of Certain Speculative Prices, Journal of Business 36, 394–419

    Article  Google Scholar 

  41. Mandelbrot, B and Taylor, H. (1967) On the Distribution of Stock Prices Differences, Operations Research 15, 1057–1062

    Article  Google Scholar 

  42. McKean, H. (2001) Scale and Clock, Selected Papers of the First World Bachelier Congress, Springer-Finance, Eds. H. Geman, D. Madan, S. Pliska and T. Vorst

    Google Scholar 

  43. Merton, R. (1973) The Theory of Rational Option Pricing, Bell Journal of Economics and Management Science 4, 141–183

    Article  MathSciNet  Google Scholar 

  44. Merton, R. (1976) Option Pricing when Underlying Stock Returns are Discontinuous, Journal of Financial Economics 3, 125–144

    Article  MATH  Google Scholar 

  45. Monroe, I. (1978) Processes that can be Embedded in Brownian Motion, Annals of Probability 6, 42–56

    Article  MATH  MathSciNet  Google Scholar 

  46. Revuz, D. and Yor, M. (1994). Continuous Martingales and Brownian Motion, Springer. Berlin Heidelberg New York

    MATH  Google Scholar 

  47. Richardson, M. and Smith, T. (1994) A Direct Test in the Mixture of Distributions Hypothesis: Measuring the Daily Flow of Information, Journal of Financial and Quantitative Analysis 29, 101–116

    Article  Google Scholar 

  48. Samuelson, P. (1965) Proof that Properly Anticipated Prices Fluctuate Randomly, Industrial Management Review 6(Spring), 41–49

    Google Scholar 

  49. Samuelson, P. (1965) Rational Theory of Warrant Pricing, Industrial Management Review 6(Spring), 13–31

    Google Scholar 

  50. Samuelson, P. (2001) Finance Theory in a Lifetime, Selected Papers of the First Bachelier World Congress, Springer-Finance, Eds. H. Geman, D. Madan, S. Pliska and T. Vorst

    Google Scholar 

  51. Volkonski, V.A. (1958) Random Substitution of Time in Strong Markov Processes, Teoreticheskaya Veroyatnost 3, 332–350

    Google Scholar 

  52. Williams, D. (1974) Path Decomposition and Continuity of Local Time for One-Dimensional Diffusions, Proceedings of London Mathematical Society 3(28), 738–768

    Article  Google Scholar 

  53. Yor, M. (1980) Loi de l’indice du lacet Brownien et distribution de Hartman-Watson, Zeitschrift für Wahrscheinlichkeitstheorie 53, 71–95

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Geman, H. (2008). Stochastic Clock and Financial Markets. In: Yor, M. (eds) Aspects of Mathematical Finance. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75265-3_5

Download citation

Publish with us

Policies and ethics