Skip to main content

Shared Ordered Binary Decision Diagrams for Dempster-Shafer Theory

  • Conference paper
Book cover Symbolic and Quantitative Approaches to Reasoning with Uncertainty (ECSQARU 2007)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4724))

Abstract

The binary representation is widely used for representing focal sets of Dempster-Shafer belief functions because it allows to compute efficiently all relevant operations. However, as its space requirement grows exponentially with the number of variables involved, computations may become prohibitive or even impossible for belief functions with larger domains. This paper proposes shared ordered binary decision diagrams for representing focal sets. This not only allows to compute efficiently all relevant operations, but also turns out to be a compact representation of focal sets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Darwiche, A., Marquis, P.: A knowledge compilation map. J. Artif. Intell. Res (JAIR) 17, 229–264 (2002)

    MathSciNet  MATH  Google Scholar 

  2. Wachter, M., Haenni, R.: Propositional DAGs: a new graph-based language for representing Boolean functions. In: Doherty, P., Mylopoulos, J., Welty, C. (eds.) KR 2006, 10th International Conference on Principles of Knowledge Representation and Reasoning, Lake District, U.K, pp. 277–285. AAAI Press, Stanford (2006)

    Google Scholar 

  3. Kohlas, J., Monney, P.: A Mathematical Theory of Hints. An Approach to the Dempster-Shafer Theory of Evidence. Lecture Notes in Economics and Mathematical Systems, vol. 425. Springer, Heidelberg (1995)

    Book  MATH  Google Scholar 

  4. Kong, A.: Multivariate Belief Functions and Graphical Models. PhD thesis, Department of Statistics, Harvard University (1986)

    Google Scholar 

  5. Smets, P.: Belief functions. In: Smets, P., Mamdani, A., Dubois, D., Prade, H. (eds.) Non-Standard Logics for Automated Reasoning, pp. 253–286. Academic Press, London (1988)

    Google Scholar 

  6. Thoma, H.M.: Belief function computations. In: Goodman, I.R., Gupta, M.M., Nguyen, H.T., Rogers, G.S. (eds.) Conditional Logic in Expert Systems, pp. 269–307. Elsevier, Amsterdam (1991)

    Google Scholar 

  7. Dempster, A.P.: Upper and lower probabilities induced by a multivalued mapping. Annals of Mathematical Statistics 38, 325–339 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dempster, A.P.: A generalization of Bayesian inference. Journal of the Royal Statistical Society 30(Series B), 205–247 (1968)

    MathSciNet  MATH  Google Scholar 

  9. Shafer, G.: A Mathematical Theory of Evidence. Princeton University Press, Princeton (1976)

    MATH  Google Scholar 

  10. Wachter, M., Haenni, R.: Multi-state directed acyclic graphs. In: Kobti, Z., Wu, D. (eds.) Canadian AI 2007. LNCS (LNAI), vol. 4509, pp. 464–475. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  11. Xu, H., Kennes, R.: Steps toward efficient implementation of dempster-shafer theory. In: Yager, R.R., Kacprzyk, J., Fedrizzi, M. (eds.) Advances in the Dempster- Shafer Theory of Evidence, pp. 153–174. John Wiley and Sons, New York (1994)

    Google Scholar 

  12. Haenni, R., Lehmann, N.: Implementing belief function computations. International Journal of Intelligent Systems 18(1), 31–49 (2003)

    Article  MATH  Google Scholar 

  13. Bryant, R.E.: Graph-based algorithms for Boolean function manipulation. IEEE Transactions on Computers C-35(8), 677–691 (1986)

    Article  MATH  Google Scholar 

  14. Bryant, R.E.: Symbolic Boolean manipulation with ordered binary-decision diagrams. ACM Computing Surveys 24(3), 293–318 (1992)

    Article  MathSciNet  Google Scholar 

  15. Somenzi, F.: Binary decision diagrams (1999)

    Google Scholar 

  16. Minato, S.I., Ishiura, N., Yajima, S.: Shared binary decision diagram with attributed edges for efficient boolean function manipulation. In: DAC 1990: Proceedings of the 27th ACM/IEEE conference on Design automation, pp. 52–57. ACM Press, New York (1990)

    Google Scholar 

  17. Brace, K.S., Rudell, R.L., Bryant, R.E.: Efficient implementation of a bdd package. In: DAC, pp. 40–45 (1990)

    Google Scholar 

  18. Bryant, R.E.: On the complexity of VLSI implementations and graph representations of Boolean functions with application to integer multiplication. IEEE Transactions on Computers 40(2), 205–213 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  19. Somenzi, F.: CUDD: CU decision diagram package release (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lehmann, N. (2007). Shared Ordered Binary Decision Diagrams for Dempster-Shafer Theory. In: Mellouli, K. (eds) Symbolic and Quantitative Approaches to Reasoning with Uncertainty. ECSQARU 2007. Lecture Notes in Computer Science(), vol 4724. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75256-1_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-75256-1_30

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-75255-4

  • Online ISBN: 978-3-540-75256-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics