Skip to main content

The Modulation of Biological Production by Oceanic Mesoscale Turbulence

  • Chapter
Book cover Transport and Mixing in Geophysical Flows

Part of the book series: Lecture Notes in Physics ((LNP,volume 744))

Abstract

This chapter reviews the current state of knowledge on bio-physical interactions at mesoscale and at sub-mesoscale. It is focused on the mid-latitudes open ocean. From examples taken from my own studies or selected in the literature, I show how high-resolution process-oriented model studies have helped to improve our understanding. I follow a process oriented approach; I first discuss the role of mesoscale eddies in moderating the nutrient flux into the well-lit euphotic zone. Then I address the impact on biogeochemistry of transport occurring on a horizontal scale smaller than the scale of an eddy. I show that submesoscale processes modulate biogeochemical budgets in a number of ways, through intense upwelling of nutrients, subduction of phytoplankton, and horizontal stirring. Finally, I emphasize that mesoscale and submesoscale dynamics have a strong impact on productivity through their influence on the stratification of the surface of the ocean. These processes have in common that they concern the short-term, local effect of oceanic turbulence on biogeochemistry. Efforts are still needed before we can get a complete picture, which would also include the far-field long-term effect of the eddies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • P. M. Holligan: Do marine phytoplankton influence global climate? In Primary productivity and biogeochemical cycles in the sea, pp. 487–501. Plenum press, New York (1992)

    Google Scholar 

  • A. R. Longhurst: Role of the marine biosphere in the global carbon cycle, Limnol. Oceanogr. 36, 1507–1526 (1991)

    Google Scholar 

  • G. Shaffer: Effects of the marine biota on global carbon cycling. In The global carbon cycle. NATO ASI Series, Vol. I 15. Springer, Berlin (1993)

    Google Scholar 

  • R. G. Williams and M. J. Follows: Physical transport of nutrients and the maintenance of biological production. In Ocean biogeochemistry: a JGOFS synthesis. Springer, Berlin (2003)

    Google Scholar 

  • C. de Boyer Montégut, A. S. Fischer, G. Madec, A. Lazar and D. Iudicone: Mixed layer depth over the global ocean: an examination of profile data and a profile-based climatology, J. Geophys. Res. 109, C12003 (2004)

    Google Scholar 

  • A. P. Martin and K. J. Richards: Mechanisms for vertical nutrient transport within a North Atlantic mesoscale eddy. Deep Sea Res. Part II 48, 757 (2001)

    Google Scholar 

  • R. T. Pollard: Mesoscale (50–100 km) circulations revealed by inverse and classical analysis of the JASIN hydrographic data. J. Phys. Oceanogr. 13, 377–394 (1983)

    Google Scholar 

  • R. K. Shearman, J. A. Barth, J. S. Allen and R. L. Haney: Diagnosis of the three-dimensional circulation in mesoscale features with large Rossby number. J. Phys. Oceanogr. 30, 2687–2709 (2000)

    Google Scholar 

  • R. Davies-Jones: The frontogenetical forcing of secondary circulations. Part I: the duality and generalization of the Q vector. J. Atmos. Sci. 48, 497–509 (1991)

    Google Scholar 

  • R. T. Pollard and L. A. Regier: Large variations in potential vorticity at small spatial scales in the upper ocean. Nature, 348, 227–229 (1990)

    Google Scholar 

  • R. T. Pollard and L. A. Regier: Vorticity and vertical circulation at an ocean front, J. Phys. Oceanogr., 22, 609–625 (1992)

    Google Scholar 

  • M. A. Spall: Baroclinic jets in confluent flow. Journal of Phys Oceanogr. 27, 1054–1071 (1997)

    Google Scholar 

  • D.-P. Wang: Model of frontogenesis: subduction and upwelling. J. Mar. Res. 51, 497–513 (1993)

    Google Scholar 

  • R. G. Williams and M. J. Follows: Oceanography: eddies make ocean deserts bloom. Nature, 394, 228 (1998)

    Google Scholar 

  • D. J. McGillicuddy, L. A. Anderson, S. C. Doney and M. E. Maltrud: Eddy-driven sources and sinks of nutrients in the upper ocean: results from a 0.1 resolution model of the North Atlantic. Global Biogeochem. Cycles 17(2), 1035 (2003)

    Google Scholar 

  • A. Oschlies: Model-derived estimates of new production: new results point towards lower values. Deep Sea Res. Part II, 48, 2173 (2001)

    Google Scholar 

  • A. Oschlies: Can eddies make ocean deserts bloom? Global Biogeochem. Cycles 16, 1106–1117 (2002)

    Google Scholar 

  • A. Oschlies: Nutrient supply to the surface waters of the North Atlantic: a model study. J. Geophys. Res. 107(C5), 3046 (2002)

    Google Scholar 

  • Y. Dandonneau and A. Le Bouteiller: A simple and rapid device for measuring planktonic primary production in situ sampling, andJ 14 CJBJ injection and incubation, Deep Sea Res. 39, 795–803 (1992)

    Google Scholar 

  • G. L. Hitchcock: Methodological aspects of time-course measurements of 14C fixation in marine phytoplankton. J. Exp. Mar. Biol. Ecol. 95, 233 (1986)

    Google Scholar 

  • T. Platt and S. Sathyendranath: Oceanic primary production: Estimation by remote sensing at local and regional scales, Science, 241, 1613–1620 (1988)

    Google Scholar 

  • T. Dickey, D. Frye, H. Jannasch, E. Boyle, D. Manov, D. Sigurdson, J. McNeil, M. Stramska, A. Michaels and N. Nelson: Initial results from the Bermuda Testbed Mooring program. Deep Sea Res. Part I 45, 771 (1998)

    Google Scholar 

  • J. F. R. Gower, K. L. Denman and R. J. Holyer: Phytoplankton patchiness indicates the fluctuation spectrum of mesoscale oceanic structure. Nature 288, 157 (1980)

    Google Scholar 

  • E. M. Hood, L. Merlivat, and T. Johannessen: Variations of CO2 and air–sea flux of CO2 in the Greenland Sea gyre using high-frequency time-series data from CARIOCA drift buoys. J. Geophys. Res. 104, 20571–20583 (1999)

    Google Scholar 

  • A. J. Watson, C. Robinson, J. E. Robinson, P. J. L. B. Williams and M. J. R. Fasham: Spatial variability in the sink for atmospheric carbon dioxide in the North Atlantic. Nature 350, 50–53 (1991)

    Google Scholar 

  • J. A. Yoder, J. Aiken, R. N. Swift, F. E. Hoge and P. M. Stegmann: Spatial variability in near-surface chlorophyll a fluorescence measured by the Airbone Oceanographic Lidar (AOL). Deep Sea Res. 40, 33–53 (1993)

    Google Scholar 

  • W. J. Jenkins: Nitrate flux into the euphotic zone near Bermuda. Nature 331, 521 (1988)

    Google Scholar 

  • W. K. Nuttle, J. S. Wroblewski and J. L. Sarmiento: Advances in modeling ocean primary production and its role in the global carbon cycle. Adv. Space Res. 11, 67 (1991)

    Google Scholar 

  • J. L. Sarmiento, R. D. Slater, M. J. R. Fasham, J. R. Ducklow, J. R. Toggweiler and G. T. Evans: A seasonal three-dimensional ecosystem model of nitrogen cycling in the north Atlantic euphotic zone, Global Biogeochem. Cycles, 7, 417–450 (1993)

    Google Scholar 

  • M. Lévy, L. Mémery and G. Madec: The onset of a bloom after deep winter convection in the North Western Mediterranean sea: mesoscale process study with a primitive equation model. J. Mar. Syst. 16, 7–21 (1998)

    Google Scholar 

  • A. Mahadevan and D. Archer: Modeling the impact of fronts and mesoscale circulation on the nutrient supply and biogeochemistry of the upper ocean. J. Geophys. Res. 105, 1209–1225 (2000)

    Google Scholar 

  • A. Oschlies and V. Garcon: Eddy-induced enhancement of primary production in a model of the North Atlantic Ocean. Nature 394, 266 (1998)

    Google Scholar 

  • M. Lévy, P. Klein and A. M. Tréguier: Impacts of submesoscale physics on phytoplankton production and subduction. J. Mar. Res. 59(4), 535–565 (2001)

    Google Scholar 

  • M. R. Lewis: Variability of plankton and plankton processes on the mesoscale. In Phytoplankton productivity: carbon assimilation in marine and freshwater ecosystems, pp. 141–156. Blackwell, London (2002)

    Google Scholar 

  • G. Flierl and D. J. McGillicuddy: Mesoscale and submesoscale physical–biological interactions. In The sea. Wiley, New York (2002)

    Google Scholar 

  • A. P. Martin: Phytoplankton patchiness: the role of lateral stirring and mixing. Prog. Oceanogr. 57, 125–174 (2003)

    Google Scholar 

  • J. Marra: Phytoplankton photosynthetic response to vertical movement in the mixed layer. Mar. Biol. 46, 203–208 (1978)

    Google Scholar 

  • R. Dugdale and F. Wilkerson: Nutrient limitation of new production in the sea. In Primary productivity and biogeochemical cycles in the sea, Plenum Press, New York, pp. 107–122 (1992)

    Google Scholar 

  • G. A. Riley: The relationship of vertical turbulence and spring diatom flowerings. J. Mar. Res. 5, 67–87 (1942)

    Google Scholar 

  • R. W. Eppley and B. J. Peterson: Particulate organic matter flux and planktonic new production in the deep ocean. Nature 282, 57–70 (1979)

    Google Scholar 

  • A. R. Longhurst and W. G. Harrison: The biological pump: profiles of plankton production and consumption in the upper ocean. Prog. Oceanogr. 22, 47–123 (1989)

    Google Scholar 

  • T. Kiörboe and B. R. MacKenzie: Turbulence-enhanced prey encounter rates in larval fish: effects of spatial scale, larval behaviour and size, J. Plankton Res. 16, 2319–2331 (1995)

    Google Scholar 

  • R. Murtugudde, J. Beauchamp, C. McClain, M. Lewis, A. Busalacchi: Effects of penetrative radiation on the upper tropical ocean circulation. J. Clim. 15, 470–486 (2002)

    Google Scholar 

  • A. Oschlies: Feedbacks of biotically induced radiative heating on upper-ocean heat budget, circulation, and biological production in a coupled ecosystem-circulation model. J. Geophys. Res. 109, C12031 (2004)

    Google Scholar 

  • D. B. Chelton, R. A. deSzoeke, M. G. Schlax, K. El Naggar and N. Siwertz: Geographical variability of the first-baroclinic Rossby radius of deformation. J. Phys. Oceanogr. 28, 433–460 (1998)

    Google Scholar 

  • D. Stammer: On eddy characteristics, eddy transports, and mean flow properties. J. Phys. Oceanogr. 28, 727–739 (1998)

    Google Scholar 

  • C. Wunsch: The vertical partition of oceanic horizontal kinetic energy. J. Phys. Oceanogr. 27, 1770–1794 (1997)

    Google Scholar 

  • D. Stammer: Global characteristics of ocean variability estimated from regional TOPEX/POSEIDON altimeter measurements. J. Phys. Oceanogr., 27, 1743–1769 (1997)

    Google Scholar 

  • J. Aristegui, P. Sangra, S. Hernandez-Leon, M. Canton, A. Hernandez-Guerra and J. L. Kerling: Island-induced eddies in the Canary islands, Deep Sea Res. Part I 41, 1509 (1994)

    Google Scholar 

  • E. Di Lorenzo, M. G. G. Foreman and W. R. Crawford: Modelling the generation of Haida Eddies. Deep Sea Res. Part II 52, 853 (2005)

    Google Scholar 

  • S. Herbette, Y. Morel and M. Arhan: Erosion of a surface vortex by a seamount. J. Phys. Oceanogr. 33, 1664–1679 (2003)

    Google Scholar 

  • T. Pichevin and D. Nof: The eddy cannon. Deep Sea Res. Part I, 43, 1475 (1996)

    Google Scholar 

  • T. Dubos and J. P. A. Babiano and P. Tabeling: Intermittency and coherent structures in the two-dimensional inverse energy cascade: comparing numerical and laboratory experiments. Phys. Rev. E 64, 36302 (2001)

    Google Scholar 

  • T. Dubos and A. Babiano: Cascades in two-dimensional mixing: a physical space approach. J. Fluid Mech. 467, 81–100 (2002)

    Google Scholar 

  • C. Pasquero, A. Babiano, A. Provenzale: Parameterization of dispersion in two-dimensional turbulence. J. Fluid Mech., 439, 279–303 (2001)

    Google Scholar 

  • A. Mariotti, B. Legras and D. G. Dritschel: Vortex stripping and the erosion of coherent structures in two-dimensional flows. Phys. Fluids 6, 3954–3962 (1994)

    Google Scholar 

  • C. Pasquero, A. Bracco, A. Provenzale and J. B. Weiss: Particle motion in a sea of eddies. In: A. Griffa, A. D. Kirwan, Jr., Arthur J. Mariano, Tamay M. Özgökmen and Thomas Rossby. (eds.) Lagrangian analysis and prediction of coastal and ocean dynamics. Cambridge University Press, (2007).

    Google Scholar 

  • B. L. Hua, J.C. McWilliams and P. Klein: Lagrangian acceleration in geostrophic turbulence. J. Fluid Mech 35, 1–22 (1998)

    Google Scholar 

  • G. Lapeyre, P. Klein and B.L. Hua: Does the tracer gradient vector align with the strain eigenvectors in 2D turbulence? Phys. Fluids 11, 3729–3737 (1999)

    Google Scholar 

  • G. Lapeyre, B. L. Hua and P. Klein: Dynamics of the orientation of active and passive scalars in two-dimensional turbulence. Physics of Fluids 13, 251–264 (2001)

    Google Scholar 

  • J. Woods: Mesoscale upwelling and primary production. In Toward a theory on biological–physical interactions in the world ocean. B. Rothschild, Dordrecht (1988)

    Google Scholar 

  • A. P. Martin, K. J. Richards, C. S. Law and M. Liddicoat: Horizontal dispersion within an anticyclonic mesoscale eddy. Deep Sea Res. Part II 48, 739 (2001)

    Google Scholar 

  • G. R. Halliwell, Jr and P. Cornillon: Large-scale SST anomalies associates with subtropical fronts in the Western North Atlantic during FASINEX. J. Mar. Res. 47, 757–775 (1989)

    Google Scholar 

  • M. A. Spall: Frontogenesis, subduction, and cross-front exchange at upper ocean fronts. J. Geophys. Res. 100, 2543–2557 (1995)

    Google Scholar 

  • B. J. Hoskins and F. P. Bretherton: Atmospheric frontogenesis models: mathematical formulation and solution. J. Atmos. Sci. 29, 11–37 (1972)

    Google Scholar 

  • J. A. Yoder, C. R. McClain, G. C. Feldman and W. E. Esaias: Annual cycles of phytoplankton chlorophyll concentrations in the global ocean: a satellite view. Global Biogeochem. Cycles 7, 181–193 (1993)

    Google Scholar 

  • M. Lévy, Y. Lehahn, J.-M. André, L. Mémery, H. Loisel, and E. Heifetz: Production regimes in the northeast Atlantic: a study based on sea-viewing wide field-of-view sensor chlorophyll and ocean general circulation model mixed layer depth. J. Geophys. Res. 110, (2005)

    Google Scholar 

  • A. R. Longhurst: Ecological geography of the sea. pp. 398 Academic Press, New York (1998)

    Google Scholar 

  • S. Dutkiewicz, M. Follows, J. Marshall and W. W. Gregg: Interannual variability of phytoplankton abundances in the North Atlantic. Deep Sea Res. Part II 48, 2323 (2001)

    Google Scholar 

  • M. Follows and S. Dutkiewicz: Meteorological modulation of the North Atlantic spring bloom. Deep Sea Res. Part II 49, 321 (2002)

    Google Scholar 

  • H. U. Sverdrup: On conditions for the vernal blooming of phytoplankton. J. Cons. Int. Expor. Mer. 18, 287–295 (1953)

    Google Scholar 

  • D. W. Menzel and J. H. Ryther: Annual variations in primary production in the Sargasso Sea off Bermuda. Deap Sea Res. 7, 282–288 (1961)

    Google Scholar 

  • A. R. Longhurst: A major seasonal phytoplankton bloom in the Madagascar Basin. Deep Sea Res. Part I: Oceanogr. Res. Papers 48, 2413 (2001)

    Google Scholar 

  • D. J. McGillicuddy, V. K. Kosnyrev, J. P. Ryan and J. A. Yoder: Covariation of mesoscale ocean color and sea-surface temperature patterns in the Sargasso Sea. Deep Sea Res. Part II 48, 1823 (2001)

    Google Scholar 

  • R. Santoleri, V. Banzon, S. Marullo, E. Napolitano, F. D’Ortenzio, and R. Evans: Year-to-year variability of the phytoplankton bloom in the southern Adriatic Sea (1998P2000): Sea-viewing wide field-of-view sensor observations and modeling study. J. Geophys. Res. 108(C9), 8122 (2003)

    Google Scholar 

  • V. Lehahn, F. dÓridio, M. Lévy and E. Heitzel: Stirring of the Northeast Atlantic spring bloom: a lagrangian analysis based on multi-satellite data. J. Geophys. Res. 112, CO8005 (2007), doi: 10. 1029/2006JC003927

    Google Scholar 

  • G. L. Hitchcock, C. Langdon and T. J. Smayda: Seasonal variations in the phytoplankton biomass and productivity of a warm-core Gulf Stream ring. Deep Sea Res. 32, 1287–1300 (1985)

    Google Scholar 

  • G. L. Hitchcock, C. Langdon and T. J. Smayda: Short term changes in the biology of a Gulf Stream warm-core ring: phytoplankton biomass and productivity. Limnol. Oceanogr. 32, 919–928 (1987)

    Google Scholar 

  • T. M. Joyce: Gulf Stream warm-core rings. J. Geophys. Res. 90(C5), 8801–8951 (1985)

    Google Scholar 

  • P. H. Wiebe and T. J. McDougall: Introduction to a collection of papers on warm-core rings. Deep Sea Res. Part A, 33, 1455 (1986)

    Google Scholar 

  • P. G. Falkowski, D. Ziemann, Z. Kolber and P. K. Bienfang: Role of eddy pumping in enhancing primary production in the ocean. Nature 352, 55 (1991)

    Google Scholar 

  • C. B. Allen, J. Kanda and E. A. Laws: New production and photosynthetic rates within and outside a cyclonic mesoscale eddy in the North Pacific subtropical gyre. Deep Sea Res. Part I 43, 917 (1996)

    Google Scholar 

  • D. J. McGillicuddy, Jr, A. R. Robinson, D. A. Siegel, H. W. Jannasch, R. Johnson, T. D. Dickey, J. McNeil, A. F. Michaels and A. H. Knap: Influence of mesoscale eddies on new production in the Sargasso Sea. Nature 394, 263 (1998)

    Google Scholar 

  • J. D. McNeil, H. W. Jannasch, T. Dickey, D. McGillicuddy, M. Brzezinski and C. M. Sakamoto: New chemical, bio-optical and physical observations of upper ocean response to the passage of a mesoscale eddy off Bermuda. J. Geophys. Res. 104 (C7), 15537–15548 (1999)

    Google Scholar 

  • A. R. Robinson, D. J. McGillicuddy, J. Calman, H. W. Ducklow, M. J. R. Fasham, F. E. Hoge, W. G. Leslie, J. J. McCarthy, S. Podewski, D. L. Porter, G. Saure and J. A. Yoder: Mesoscale and upper ocean variabilities during the 1989 JGOFS bloom study. Deep Sea Res. 40, 9–35 (1993)

    Google Scholar 

  • J. Aristegui, P. Tett, A. Hernandez-Guerra, G. Basterretxea, M. F. Montero, K. Wild, P. Sangra, S. Hernandez-Leon, M. Canton and J. A. Garcia-Braun: The influence of island-generated eddies on chlorophyll distribution: a study of mesoscale variation around Gran Canaria. Deep Sea Res. Part I 44, 71 (1997)

    Google Scholar 

  • R. M. Letelier, D. M. Karl, M. R. Abbott, P. Flament, M. Freilich, R. Lukas, T. Strub: Role of late winter mesoscale events in the biogeochemical variability of the upper water column of the North Pacific Subtropical Gyre. J. Geophys. Res. 105, (C12), 28723–28739 (2000)

    Google Scholar 

  • X. A. G. Moran, I. Taupier-Letage, E. Vazquez-Dominguez, S. Ruiz, L. Arin, P. Raimbault and M. Estrada: Physical–biological coupling in the Algerian Basin (SW Mediterranean): influence of mesoscale instabilities on the biomass and production of phytoplankton and bacterioplankton. Deep Sea Res. Part I, 48, 405 (2001)

    Google Scholar 

  • J. A. Barth, T. J. Cowles and S. D. Pierce: Mesoscale physical and bio-optical structure of the Antartic Polar Front near 170 degrees W during austral spring. J. Geophys. Res. 106 (C7), 13879–13902 (2001)

    Google Scholar 

  • C. A. E. Garcia, Y. V. B. Sarma, M. M. Mata and V. M. T. Garcia: Chlorophyll variability and eddies in the Brazil–Malvinas Confluence region. Deep Sea Res. Part II 51, 159 (2004)

    Google Scholar 

  • G. L. Hitchcock, A. J. Mariano and T. Rossby: Mesoscale pigment fields in the Gulf Stream: observations in a meander crest and trough. J. Geophys. Res. 98, 8425–8445 (1993)

    Google Scholar 

  • V. H. Strass: Chlorophyll patchiness caused by mesoscale upwelling at fronts. Deep Sea Res. 39, 75–96 (1992)

    Google Scholar 

  • F. F. Pérez, M. Gilcoto and A. F. Ríos: Large and mesoscale variability of the water masses and the deep chlorophyll maximum in the Azores Front. J. Geophys. Res. 108(C7), 3215 (2003)

    Google Scholar 

  • S. E. Lohrenz, D. A. Phinney, C. S. Yentch and D. B. Olson: Pigment and primary production distributions in a Gulf Stream meander. J. Geophys. Res. 98, 14545–14560 (1993)

    Google Scholar 

  • L. Prieur and A. Sournia: “Almofront-1" (April–May 1991): an interdisciplinary study of the Almeria-Oran geostrophic front, SW Mediterranean Sea. J. Mar. Syst. 5, 187–203 (1994)

    Google Scholar 

  • V. H. Strass, A. C. Naveira Garabato, R. T. Pollard, H. I. Fischer, I. Hense, J. T. Allen, J. F. Read, H. Leach and V. Smetacek: Mesoscale frontal dynamics: shaping the environment of primary production in the Antarctic Circumpolar Current. Deep Sea Res. Part II: Topical Studies Oceanogr. 49, 3735 (2002)

    Google Scholar 

  • C. J. Ashjian, S. L. Smith, C. N. Flagg, A. J. Mariano, W. J. Behrens and P. V. Z. Lane: The influence of a Gulf Stream meander on the distribution of zooplankton biomass in the Slope Water, the Gulf Stream, and the Sargasso Sea, described using a shipboard acoustic Doppler current profiler. Deep Sea Res. 41, 23–50 (1994)

    Google Scholar 

  • M. E. Huntley, M. Zhou and W. Nordhausen: Mesoscale distribution of zooplankton in the California current in late spring, observed by optical plankton counter, J. Mar. Res. 53, 647–674 (1995)

    Google Scholar 

  • B. Karrasch, H. G. Hoppe, S. Ullrich and S. Podewski: The role of mesoscale hydrography on microbial dynamics in the northeast Atlantic: results of a spring bloom experiment. J. Mar. Res. 54, 99–122 (1996)

    Google Scholar 

  • J. P. Labat, P. Mayzaud, S. Dallot, A. Errhif, S. Razouls and S. Sabini: Mesoscale distribution of zooplankton in the Sub-Antarctic Frontal system in the Indian part of the Southern Ocean: a comparison between optical plankton counter and net sampling. Deep Sea Res. Part I 49, 735 (2002)

    Google Scholar 

  • D. L. Mackas, M. Tsurumi, M. D. Galbraith and D. R. Yelland: Zooplankton distribution and dynamics in a North Pacific Eddy of coastal origin: II. Mechanisms of eddy colonization by and retention of offshore species. Deep Sea Res. Part II 52, 1011 (2005)

    Google Scholar 

  • P. Velez-Belchi, J. T. Allen and V. H. Strass: A new way to look at mesoscale zooplankton distributions: an application at the Antarctic Polar Front. Deep Sea Res. Part II, 49, 3917 (2002)

    Google Scholar 

  • P. P. Newton, R. S. Lampitt, T. D. Jickells, P. King and C. Boutle: Temporal and spatial variability of biogenic particles fluxes during the JGOFS northeast Atlantic process studies at 47!N, 20!W. Deep Sea Res. Part I: Oceanographic Res. Papers, 41, 1617 (1994)

    Google Scholar 

  • M. Lévy, A. Estubier and G. Madec: Choice of an advection schemeJ for biogeochemical models. Geophys. Res. Lett. 28, 3725–3728 (2001)

    Google Scholar 

  • A. Oschlies: Equatorial nutrient trapping in biogeochemical ocean models: the role of advection numerics. Global Biogeochem. Cycle, 14, 655–667 (2000)

    Google Scholar 

  • O. Aumont, E. Maier-Reimer, S. Blain and P. Monfray: An ecosystem model of the global ocean including Fe, Si, P colimitations. Global Biogeochem. Cycles 17, 1060 (2003)

    Google Scholar 

  • M. Lévy, A.-S. Krémeur and L. Mémery: Description of the LOBSTER biogeochemical model implemented in the OPA system, p. 13, Institut Pierre Simon Laplace, (2004)

    Google Scholar 

  • L. Michaelis and M. L. Menten: Die Kinetik der Invertinwirkung. Biochemistry, Z (49), 333–369 (1913)

    Google Scholar 

  • M. J. R. Fasham: Variations in the seasonal cycle of biological production in subarctic oceans: a model sensitivity analysis. Deep Sea Res. 42, 1111–1149 (1995)

    Google Scholar 

  • B. Faugeras, M. Lévy, L. Memery, J. Verron, J. Blum and I. Charpentier: Can biogeochemical fluxes beJrecovered from nitrate and chlorophyll data? A case study assimilating data in the Northwestern Mediterranean sea at the JGOFS-DYFAMED station, J. Mar. Syst. 40–41, 90–125 (2003)

    Google Scholar 

  • Y. H. Spitz, J. R. Moisan and M. R. Abbott: Configuring an ecosystem model using data from the Bermuda Atlantic Time Series (BATS) Deep Sea Res. Part II, 48, 1733 (2001)

    Google Scholar 

  • B. Blanke and P. Delecluse: Variability of the tropical Atlantic Ocean simulated by a general circulation model with two different mixed-layer physics. J. Phys. Oceanogr. 23, 1363–1388 (1993)

    Google Scholar 

  • P. Gaspar, Y. Gregories and J. M. Lefevre: A simple eddy kinetic energy model for simulations of the oceanic vertical mixing: tests at station papa and long term upper ocean study site. J. Geophys. Res. 95, 16179–16193 (1990)

    Google Scholar 

  • P. Gent and J. McWilliams: Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr. 20, 150–155 (1990)

    Google Scholar 

  • P. R. Gent, J. Willebrand, T. J. McDougall and J. C. McWilliams: Parameterizing eddy-induced tracer transports in ocean circulation models. J. Phys. Oceanogr. 25, 463–474 (1995)

    Google Scholar 

  • W. G. Large, J. C. McJWilliams and S. C. Doney: Oceanic vertical mixing: a review and a model with a non-local boundary layer parameterization. Rev. Geophy. 32, 363–403 (1994)

    Google Scholar 

  • A. M. Tréguier, I. M. Held and V. D. Larichev: Parameterization of quasigeostrophic eddies in primitive equation ocean models. Journal Phys. Oceanogr. 27, 567–580 (1997)

    Google Scholar 

  • M. Visbeck, J. Marshall, T. Haine and M. Spall: Specification of eddy transfer coefficients in coarse-resolution ocean circulation models. J. Phys. Oceanogr. 27, 381–402 (1997)

    Google Scholar 

  • S. Edouard, B. Legras, F. Lefevre and R. Eymard: The effect of small-scale inhomogeneities on ozone depletion in the Arctic. Nature 384, 444 (1996)

    Google Scholar 

  • J. F. Vinuesa and J. Vila-Guerau de Arellano: Introducing effective reaction rates to account for the inefficient mixing of the convective boundary layer. Atmos. Environ. 39, 445 (2005)

    Google Scholar 

  • D. J. McGillicuddy and A. R. Robinson: Eddy-induced nutrient supply and new production in the Sargasso Sea. Deep Sea Res. Part I 44, 1427 (1997)

    Google Scholar 

  • C. S. Yentsch and D. A. Phinney: Rotary motions and convection as a means of regulationg primary production in warm core rings. J. Geophys. Res. 90, 3237–3248 (1985)

    Google Scholar 

  • D. J. McGillicuddy, R. Johnson, D. A. Siegel, A. F. Michaels, N. R. Bates and A. H. Knap: Mesoscale variations of biogeochemical properties in the Sargasso Sea. J. Geophys. Res., 104, C6, 13381–13394 (1999)

    Google Scholar 

  • D. A. Siegel, D. J. McGillicuddy and E. A. Fields: Mesoscale eddies, satellite altimetry, and new production in the Sargasso Sea. J. Geophys. Res. 104(C6), 13359 (1999)

    Google Scholar 

  • A. P. Martin and P. Pondaven: On estimates for the vertical nitrate flux due to eddy pumping. J. Geophys. Res. 108(C11), 3359 (2003)

    Google Scholar 

  • D. J. McGillicuddy, A. R. Robinson and J. J. McCarthy: Coupled physical and biological modelling of the spring bloom in the North Atlantic (II): three dimensional bloom and post-bloom processes. Deep Sea Res. Part I 42, 1359 (1995)

    Google Scholar 

  • M. Kahru: Phytoplankton patchiness generated by long internal waves: a model. Mar. Ecol. 10, 111–117 (1983)

    Google Scholar 

  • P. Cipollini, D. Cromwell, P. G. Challenor and S. Raffaglio: Rossby waves detected in global ocean color data, Geophys. Res. Lett. 28, 323–326 (2001)

    Google Scholar 

  • B. M. Uz, J. A. Yoder and V. Osychny: Pumping of nutrients to ocean surface waters by the action of propagating planetary waves. Nature 409, 597 (2001)

    Google Scholar 

  • D. A. Siegel: Oceanography: the Rossby rototiller. Nature, 409, 576 (2001)

    Google Scholar 

  • Y. Dandonneau, A. Vega, H. Loisel, Y. du Penhoat and C. Menkes: Oceanic Rossby Waves acting as a “hay rake" for ecosystem floating by-products. Science 302, 1548–1551 (2003)

    Google Scholar 

  • P. D. Killworth: Comment on Oceanic Rossby Waves acting as a “hay rake" for ecosystem floating by-products. Science 304 (2004)

    Google Scholar 

  • Y. Dandonneau, C. Menkes, T. Gorgues and G. Madec: Response to comment on oceanic Rossby waves acting as a “hay rake“ for ecosystem floating by-products, Science 304, 390 (2004)

    Google Scholar 

  • P. D. Killworth, P. Cipollini, B. M. Uz, J. R. Blundell, Physical and biological mechanisms for planetary waves observed in sea-surface chlorophyll. J. Geophys. Res. 109, C07002 (2004)

    Google Scholar 

  • E. L. McDonagh and K. J. Heywood: The origin of an anomalous ring in the Southeast Atlantic. J. Phys. Oceanogr., 29, 2050–2064 (1999)

    Google Scholar 

  • P. L. Richardson: Gulf Stream Rings. In Eddies in marine science, pp. 19–45 Chapter 2, Springler, Berlin (1993)

    Google Scholar 

  • A. Provenzale: Transport by coherent barotropic vortices, Annu. Rev. Fluid Mech. 31, 55–93 (1999)

    Google Scholar 

  • M. Lévy: Mesoscale variability of phytoplankton and of new production: JBJimpact of the large scale nutrient distribution. J. Geophys. Res. 108(C11), 3358 (2003)

    Google Scholar 

  • W. R. Crawford, P. J. Brickley, T. D. Peterson and A. C. Thomas: Impact of Haida Eddies on chlorophyll distribution in the Eastern Gulf of Alaska. Deep Sea Res. Part II 52, 975 (2005)

    Google Scholar 

  • G. Flierl and C. S. Davis: Biological effects of Gulf Stream meandering. J. Mar. Res. 51, 529–560 (1993)

    Google Scholar 

  • C. L. Smith, K. J. Richards and M. J. R. Fasham: The impact of mesoscale eddies on plankton dynamics in the upper ocean. Deep Sea Res. Part I 43, 1807–1832 (1996)

    Google Scholar 

  • A. Yoshimori and M. J. Kishi: Effects of interaction between two warm-core rings on phytoplankton distribution. Deep Sea Res. 41, 1039–1052 (1994)

    Google Scholar 

  • S. A. Spall and K. J. Richards: A numerical model of mesoscale frontal instabilities and plankton dynamics – I. Model formulation and initial experiments. Deep Sea Res. I, 47, 1261 (2000)

    Google Scholar 

  • M. Lévy and P. Klein: Does the low frequency variability of mesoscale dynamicsJ explain a part of the phytoplankton and zooplankton spectral variability? Proc. R. Soc. Lond. 460, 1673–1683 (2004)

    Google Scholar 

  • P. Klein, A.-M. Tréguier and B. L. Hua: Three-dimensional stirring of thermohaline fronts. J. Mar. Res. 56, 589–612 (1998)

    Google Scholar 

  • A. J. G. Nurser and J. W. Zhang: Eddy-induced mixed layer shallowing and mixed layer/thermocline exchange, J. Geophys. Res., 105 (C9) 851–868 (2000)

    Google Scholar 

  • P. W. Boyd and P. P. Newton: Does planktonic community structure determine downward particulate organic carbon flux in different oceanic provinces? Deep Sea Res. Part I 46, 63 (1999)

    Google Scholar 

  • W. Koeve, F. Pollehne, A. Oschlies and B. Zeitzschel: Storm-induced convective export of organic matter during spring in the northeast Atlantic Ocean. Deep Sea Res. Part I 49, 1431 (2002)

    Google Scholar 

  • A. Mahadevan and J. W. Campbell: Biogeochemical patchiness at the sea surface. Geophys. Res. Lett. 29, 19 (2002)

    Google Scholar 

  • J. R. Ledwell, A. J. Watson and C. S. Law: Evidence for slow mixing across the pycnocline from an open ocean tracer release experiment. Nature 364, 701–703 (1993)

    Google Scholar 

  • E. R. Abraham, C. S. Law, P. W. Boyd, S. J. Lavender, M. T. Maldonado and A. R. Bowie: Importance of stirring in the development of an iron-fertilized phytoplankton bloom. Nature 407, 727 (2000)

    Google Scholar 

  • E. R. Abraham: The generation of plankton patchiness by turbulent stirring. Nature 391, 577 (1998)

    Google Scholar 

  • P. Klein and B. L. Hua : The mesoscale variability of the sea surface temperature : an analytical and numerical model. J. Mar. Res. 48, 729–763 (1990)

    Google Scholar 

  • A. P. Martin, K. J. Richards, A. Bracco and A. Provenzale: Patchy productivity in the open ocean. Global Biogeochem. Cycles 16(2), 1025 (2002)

    Google Scholar 

  • C. Pasquero, A. Bracco and A. Provenzale: Impact of the spatio-temporal variability of the nutrient flux on primary productivity in the ocean. J. Geophys. Res. 110, C07005 (2005)

    Google Scholar 

  • D. Antoine, A. Morel and J.-M. André: Algal pigment distribution and primary production in the Eastern Mediterranean as derived from coastal zone color scanner observations. J. Geophys. Res. 100, 16193–16209 (1995)

    Google Scholar 

  • D. W. Townsend, L. M. Cammen, P. M. Holligan, D. E. Campbell and N. R. Pettigrew: Causes and consequences of variability in the timing of spring phytoplankton blooms. Deep Sea Res. Part I 41, 747 (1994)

    Google Scholar 

  • P. Klein and B. L. Hua: Mesoscale heterogeneity of the wind-driven mixed layer: influence of a quasigeostrophic flow. J. Mar. Res. 46 495–525 (1988)

    Google Scholar 

  • C. C. Henning and G. K. Vallis: The effects of mesoscale eddies on the stratification and transport of an ocean with a circumpolar channel. J. Phys. Oceanogr. 35, 880–896 (2005)

    Google Scholar 

  • C. A. Katsman, M. A. Spall and R. S. Pickart: Boundary current eddies and their role in the restratification of the Labrador Sea. J. Phys. Oceanogr. 34, 1967–1983 (2004)

    Google Scholar 

  • A. J. Hermann and W. B. Owens: Energetics of gravitational adustment for mesoscale chimneys. J. Phys. Oceanogr. 23, 346–371 (1992)

    Google Scholar 

  • G. Madec, M. Chartier and M. Crépon: The effect of thermohaline forcing variability on deep water formation in the western Mediterranean Sea: a high-resolution three-dimensional numerical study. Dyn. Atmosp. Oceans 15, 301–332 (1991)

    Google Scholar 

  • G. Madec, F. Lott, P. Delecluse and M. Crépon: Large scale pre-conditioning of deep water formation in the north-western Mediterranean sea. J. Phys. Oceanogr. 26, 1393–1408 (1996)

    Google Scholar 

  • V. H. Strass, A. C. N. Garabato, A. U. Bracher, R. T. Pollard and M. I. Lucas: A 3-D mesoscale map of primary production at the Antarctic Polar Front: results of a diagnostic model. Deep Sea Res. Part II 49, 3813 (2002)

    Google Scholar 

  • M. Lévy, L. Memery and G. Madec: Combined effects of mesoscale processes and atmospheric high-frequency variability on the spring bloom in the MEDOC area. Deep Sea Res. Part I 47, 27 (2000)

    Google Scholar 

  • M. Lévy, L. Mémery and G. Madec: The onset of the Spring Bloom in the MEDOC area: mesoscale spatial variability. Deep Sea Res. Part I: Oceanographic Res. Papers 46, 1137 (1999)

    Google Scholar 

  • M. Lévy, M. Gavart, L. Mémery, G. Caniaux and A. Paci: A four-dimensional mesoscale map of the spring bloom in the northeast Atlantic (POMME experiment): results of a prognostic model. J. Geophys. Res. 110, C07S21, (2005)

    Google Scholar 

  • A. Paci, G. Caniaux, M. Gavart, H. Giordani, M. Lévy, L. Prieur, and G. Reverdin: A high-resolution simulation of the ocean during the POMME experiment: simulation results and comparison with observations. J. Geophys. Res. 110, (2005), doi:10.1029/2004JC002712

    Google Scholar 

  • A. Paci, G. Caniaux, H. Giordani, M. Lévy, L. Prieur and G. Reverdin: A high-resolution simulation of the ocean during the POMME experiment: mesoscale variabllity and near surface processes. J. Geophys Res. 112, C04007 (2007), doi: 10.1029/2005JC003389

    Google Scholar 

  • G. Lapeyre and P. Klein and B. L. Hua: Oceanic restratification forced by surface frontogenesis. J. Phys. Oceanogr 36, 1577–1590 (2006)

    Google Scholar 

  • N. Gruber, H. Frenzel, S. C. Doney, P. Marchesiello, J. C. McWilliams, J. R. Moisan, J. Oram, G. K. Plattner and K. D. Stolzenbach: Simulation of plankton ecosystem dynamics and upper ocean biogeochemistry in the California current system: Part I: Model description, evaluation, and ecosystem structure, Deep-Sea Research 53(9), 1483–1516 (2006)

    Google Scholar 

  • C. E. Menkes, S. C. Kennan, P. Flament, Y. Dandonneau, S. Masson, B. Biessy, E. Marchal and A. Herbland: A whirling ecosystem in the equatorial Atlantic, Geophys. Res. Lett. 29, 48 (2002)

    Google Scholar 

  • L. A. Anderson, A. R. Robinson and C. J. Lozano: Physical and biological modeling in the Gulf Stream region: I. Data assimilation methodology. Deep Sea Res. Part I 47, 1787 (2000)

    Google Scholar 

  • L. A. Anderson and A. R. Robinson: Physical and biological modeling in the Gulf Stream region: Part II. Physical and biological processes. Deep Sea Res. Part I 48, 1139 (2001)

    Google Scholar 

  • E. E. Popova, C. J. Lozano, M. A. Srokosz, M. J. R. Fasham, P. J. Haley and A. R. Robinson: Coupled 3D physical and biological modelling of the mesoscale variability observed in North-East Atlantic in spring 1997: biological processes, Deep Sea Res. Part I, 49, 1741 (2002)

    Google Scholar 

  • A. Mahadevan, M. Lévy and L. Mémery: Mesoscale variability of sea surface PCO2: JBJWhat does it respond to? Global Biogeochem. Cycles 18, 1017 (2004)

    Google Scholar 

  • S. J. Bury, P. W. Boyd, T. Preston, G. Savidge and N. J. P. Owens: Size-fractionated primary production and nitrogen uptake during a North Atlantic phytoplankton bloom: implications for carbon export estimates. Deep Sea Res. Part I 48, 689 (2001)

    Google Scholar 

  • S. D. Batten and W. R. Crawford: The influence of coastal origin eddies on oceanic plankton distributions in the eastern Gulf of Alaska. Deep Sea Res. Part II 52, 991 (2005)

    Google Scholar 

  • H. Claustre, M. Babin, D. Merien, J. Ras, L. Prieur, S. Dallot, O. Prasil, H. Dousova and T. Moutin: Toward a taxon-specific parameterization of bio-optical models of primary production: a case study in the North Atlantic. J. Geophys. Res. 110, C07S12, (2005) doi:10.1029/2004JC002634

    Google Scholar 

  • E. N. Sweeney, D. J. McGillicuddy and K. O. Buesseler: Biogeochemical impacts due to mesoscale eddy activity in the Sargasso Sea as measured at the Bermuda Atlantic Time-series Study (BATS). Deep Sea Res. Part II 50, 3017 (2003)

    Google Scholar 

  • R. D. Vaillancourt, J. Marra, M. P. Seki, M. L. Parsons and R. R. Bidigare: Impact of a cyclonic eddy on phytoplankton community structure and photosynthetic competency in the subtropical North Pacific Ocean. Deep Sea Res. Part I: Oceanogr. Res. Papers 50, 829 (2003)

    Google Scholar 

  • A. Bracco and A. Provenzale: Mesoscale vortices and the paradox of the plankton. Proc. R. Soc. B 267, 1795–1800 (2000)

    Google Scholar 

  • A. P. Martin, K. J. Richards and M. J. R. Fasham: Phytoplankton production and community structure in an unstable frontal region. J. Mar. Syst. 28, 65–89 (2001)

    Google Scholar 

  • I. D. Lima, D. B. Olson and S. C. Doney: Biological response to frontal dynamics and mesoscale variability in oligotrophic environments: a numerical modeling study. J. Geophys. Res. 107(C8) (2002)

    Google Scholar 

  • C. Pasquero, A. Bracco and A. Provenzale: Coherent vortices, Lagrangian particles and the marine ecosystem: vortical shelter. In Shallow flows. pp. 399–412 Balkema Publishers, Leiden, NL (2004)

    Google Scholar 

  • M. M. Lee, D. P. Marshall and R. G. Williams: On the eddy transfer of nutrients: Advective or diffusive? J. Mar. Res. 55, 483–505 (1997)

    Google Scholar 

  • M. M. Lee and R. G. Williams: The role of eddies in the isopycnic transfer of nutrients and their impact on biological production. J. Mar. Res. 58, 895–917 (2000)

    Google Scholar 

  • R. G. Williams and M. J. Follows: The Ekman transfer of nutrients and maintenance of new production over the North Atlantic. Deep Sea Res. Part I 45, 461 (1998)

    Google Scholar 

  • M. Lévy: Oceanography: nutrients in remote mode. Nature 437, 628–629 (2005)

    Google Scholar 

  • J. B. Palter, M. S. Lozier and R. T. Barber: The impact of the nutrient reservoir in the North Atlantic subtropical gyre. Nature 437, 687–692 (2005)

    Google Scholar 

  • W. Hazeleger and S. S. Drijfhout: Eddy subduction in a model of the subtropical gyre. J. Phys. Oceanogr. 30, 677–695 (2000)

    Google Scholar 

  • M. Valdivieso Da Costa, H. Mercier and A. M. Tréguier: Effects of the mixed layer time variability on kinematic subduction rate diagnostics. J. Phys. Oceanogr. 35, 427–443 (2005)

    Google Scholar 

  • M. Nakamura and T. Kagimoto: Potential vorticity and eddy potential enstrophy in the North Atnatic Ocean simulated by a global eddy-resolving model. Dyn. Atmos. Oceans, 41, 28–59 (2006)

    Google Scholar 

  • G. Danabasoglu, J. McWilliams and P. Gent: The role of mesoscale tracer transports in the global ocean circulation, Science 264, 1123–1126 (1994)

    Google Scholar 

  • A. M. Tréguier, O. Boebel, B. Barnier and G. Madec: Agulhas eddy fluxes in a 1/6! Atlantic model. Deep Sea Res. Part II 50, 251 (2003)

    Google Scholar 

  • T. Dubos: A spatially selective parameterization for the transport of a passive or active tracer by a large scale flow. C. R. Ac. Sci. (Paris) 329, 509–516 (2001)

    Google Scholar 

  • M. Lévy, M. Visbeck and N. Naik: Sensitivity of primary production toJ different eddy parameterizations: a case study of the spring bloom development in the northwestern Mediterranean Sea. J. Mar. Res. 57, (1999)

    Google Scholar 

  • C. Pasquero: Differential eddy diffusion of biogeochemical tracers. Geophys. Res. Lett. 32 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lévy, M. (2008). The Modulation of Biological Production by Oceanic Mesoscale Turbulence. In: Weiss, J.B., Provenzale, A. (eds) Transport and Mixing in Geophysical Flows. Lecture Notes in Physics, vol 744. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75215-8_9

Download citation

Publish with us

Policies and ethics