Skip to main content

Genetic Dissection of Host Resistance to Mycobacterium tuberculosis: The sst1 Locus and the Ipr1 Gene

  • Chapter

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 321))

Abstract

Genetic variation of the host significantly contributes to dramatic differences in the outcomes of natural infection with virulent Mycobacterium tuberculosis (MTB) in humans, as well as in experimental animal models. Host resistance to tuberculosis is a complex multifactorial genetic trait in which many genetic polymorphisms contribute to the phenotype, while their individual contributions are influenced by gene–gene and gene–environment interactions. The most epidemiologically significant form of tuberculosis infection in humans is pulmonary tuberculosis. Factors that predispose immunocompetent individuals to this outcome, however, are largely unknown. Using an experimental mouse model of infection with virulent MTB for the genetic analysis of host resistance to this pathogen, we have identified several tuberculosis susceptibility loci in otherwise immunocompetent mice. The sst1 locus has been mapped to mouse chromosome 1 and shown to be especially important for control of pulmonary tuberculosis. Rampant progression of tuberculosis infection in the lungs of the sst1-susceptible mouse was associated with the development of necrotic lung lesions, which was prevented by the sst1-resistant allele. Using a positional cloning approach, we have identified a novel host resistance gene, Ipr1, which is encoded within the sst1 locus and mediates innate immunity to the intracellular bacterial pathogens MTB and Listeria monocytogenes. The sst1 locus and the Ipr1 gene participate in control of intracellular multiplication of virulent MTB and have an effect on the infected macrophages’ mechanism of cell death. The Ipr1 is an interferon-inducible nuclear protein that dynamically associates with other nuclear proteins in macrophages primed with interferons or infected with MTB. Several of the Ipr1-interacting proteins are known to participate in regulation of transcription, RNA processing, and apoptosis. Further biochemical analysis of the Ipr1-mediated pathway will help delineate a mechanism of innate immunity that is especially important for control of tuberculosis progression in the lungs.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abel L, Casanova JL (2000) Genetic predisposition to clinical tuberculosis: bridging the gap between simple and complex inheritance. Am J Hum Genet 67:274–277

    Article  PubMed  CAS  Google Scholar 

  • Adams DJ, Dermitzakis ET, Cox T, Smith J, Davies R, Banerjee R, et al (2005) Complex haplotypes, copy number polymorphisms and coding variation in two recently divergent mouse strains. Nat Genet 37:532–536

    Article  PubMed  CAS  Google Scholar 

  • Agulnik S, Plass C, Traut W, Winking H (1993) Evolution of a long-range repeat family in chromosome 1 of the genus Mus. Mamm Genome 4:704–710

    Article  PubMed  CAS  Google Scholar 

  • Alcais A, Fieschi C, Abel L, Casanova JL (2005) Tuberculosis in children and adults: two distinct genetic diseases. J Exp Med 202:1617–1621

    Article  PubMed  CAS  Google Scholar 

  • Babb C, Keet EH, van Helden PD, Hoal EG (2007) SP110 polymorphisms are not associated with pulmonary tuberculosis in a South African population. Hum Genet 121:521–522

    Article  PubMed  CAS  Google Scholar 

  • Bellamy R, Beyers N, McAdam KP, Ruwende C, Gie R, Samaai P, et al (2000) Genetic susceptibility to tuberculosis in Africans: a genome-wide scan. Proc Natl Acad Sci U S A 97: 8005–8009

    Article  PubMed  CAS  Google Scholar 

  • Bleed D, Dye C, Raviglione MC (2000) Dynamics and control of the global tuberculosis epidemic. Curr Opin Pulm Med 6:174–179

    Article  PubMed  CAS  Google Scholar 

  • Bloch DB, Nakajima A, Gulick T, Chiche JD, Orth D, de La Monte SM, et al (2000) Sp110 localizes to the PML-Sp100 nuclear body and may function as a nuclear hormone receptor transcriptional coactivator. Mol Cell Biol 20:6138–6146

    Article  PubMed  CAS  Google Scholar 

  • Bottomley MJ, Collard MW, Huggenvik JI, Liu Z, Gibson TJ, Sattler M (2001) The SAND domain structure defines a novel DNA-binding fold in transcriptional regulation. Nat Struct Biol 8:626–633

    Article  PubMed  CAS  Google Scholar 

  • Boyartchuk V, Rojas M, Yan BS, Jobe O, Hurt N, Dorfman DM, et al (2004) The host resistance locus sst1 controls innate immunity to Listeria monocytogenes infection in immunodeficient mice. J Immunol 173:5112–5120

    PubMed  CAS  Google Scholar 

  • Buschman E, Apt AS, Nickonenko BV, Moroz AM, Averbakh MH, Skamene E (1988) Genetic aspects of innate resistance and acquired immunity to mycobacteria in inbred mice. Springer Semin Immunopathol 10:319–336

    Article  PubMed  CAS  Google Scholar 

  • Capuano SV 3rd, Croix DA, Pawar S, Zinovik A, Myers A, Lin PL, et al (2003) Experimental Mycobacterium tuberculosis infection of cynomolgus macaques closely resembles the various manifestations of human M. tuberculosis infection. Infect Immun 71:5831–5844

    Article  PubMed  CAS  Google Scholar 

  • Casanova JL, Abel L (2002) Genetic dissection of immunity to mycobacteria: the human model. Annu Rev Immunol 20:581–620

    Article  PubMed  CAS  Google Scholar 

  • Casanova JL, Abel L (2005) Inborn errors of immunity to infection: the rule rather than the exception. J Exp Med 202:197–201

    Article  PubMed  CAS  Google Scholar 

  • Casanova JL, Schurr E, Abel L, Skamene E (2002) Forward genetics of infectious diseases: immunological impact. Trends Immunol 23:469–472

    Article  PubMed  CAS  Google Scholar 

  • Chackerian AA, Perera TV, Behar SM (2001) Gamma interferon-producing CD4+ T lymphocytes in the lung correlate with resistance to infection with Mycobacterium tuberculosis. Infect Immun 69:2666–2674

    Article  PubMed  CAS  Google Scholar 

  • Chackerian AA, Alt JM, Perera TV, Dascher CC, Behar SM (2002) Dissemination of Mycobacterium tuberculosis is influenced by host factors and precedes the initiation of T-cell immunity. Infect Immun 70:4501–4509

    Article  PubMed  CAS  Google Scholar 

  • Chen M, Gan H, Remold HG (2006) A mechanism of virulence: virulent Mycobacterium tuberculosis strain H37Rv, but not attenuated H37Ra, causes significant mitochondrial inner membrane disruption in macrophages leading to necrosis. J Immunol 176:3707–3716

    PubMed  CAS  Google Scholar 

  • Cohen MK, Bartow RA, Mintzer CL, McMurray DN (1987) Effects of diet and genetics on Mycobacterium bovis BCG vaccine efficacy in inbred guinea pigs. Infect Immun 55:314–319

    PubMed  CAS  Google Scholar 

  • Comstock GW (1978) Tuberculosis in twins: a re-analysis of the Prophit survey. Am Rev Respir Dis 117:621–624

    PubMed  CAS  Google Scholar 

  • Cooper AM, Flynn JL (1995) The protective immune response to Mycobacterium tuberculosis. Curr Opin Immunol 7:512–516

    Article  PubMed  CAS  Google Scholar 

  • Dorman SE, Hatem CL, Tyagi S, Aird K, Lopez-Molina J, Pitt ML, et al (2004) Susceptibility to tuberculosis: clues from studies with inbred and outbred New Zealand White rabbits. Infect Immun 72:1700–1705

    Article  PubMed  CAS  Google Scholar 

  • Endrizzi MG, Hadinoto V, Growney JD, Miller W, Dietrich WF (2000) Genomic sequence analysis of the mouse Naip gene array. Genome Res 10:1095–1102

    Article  PubMed  CAS  Google Scholar 

  • Flynn JL (2006) Lessons from experimental Mycobacterium tuberculosis infections. Microbes Infect 8:1179–1188

    Article  PubMed  CAS  Google Scholar 

  • Flynn JL, Chan J (2005) What’s good for the host is good for the bug. Trends Microbiol 13:98–102

    Article  PubMed  CAS  Google Scholar 

  • Fortier A, Diez E, Gros P (2005a) Naip5/Birc1e and susceptibility to Legionella pneumophila. Trends Microbiol 13:328–335

    Article  PubMed  CAS  Google Scholar 

  • Fortier A, Min-Oo G, Forbes J, Lam-Yuk-Tseung S, Gros P (2005b) Single gene effects in mouse models of host: pathogen interactions. J Leukoc Biol 77:868–877

    Article  PubMed  CAS  Google Scholar 

  • Fortin A, Abel L, Casanova JL, Gros P (2007) Host genetics of mycobacterial diseases in mice and men: forward genetic studies of BCG-osis and tuberculosis. Annu Rev Genomics Hum Genet 8:163–192

    Article  PubMed  CAS  Google Scholar 

  • Gagneux S, Deriemer K, Van T, Kato-Maeda M, de Jong BC, Narayanan S, et al (2006) Variable host-pathogen compatibility in Mycobacterium tuberculosis. Proc Natl Acad Sci USA 103:2869–2873

    Article  PubMed  CAS  Google Scholar 

  • Gardam MA, Keystone EC, Menzies R, Manners S, Skamene E, Long R, et al (2003) Anti-tumour necrosis factor agents and tuberculosis risk: mechanisms of action and clinical management. Lancet Infect Dis 3:148–155

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez E, Kulkarni H, Bolivar H, Mangano A, Sanchez R, Catano G, et al (2005) The influence of CCL3L1 gene-containing segmental duplications on HIV-1/AIDS susceptibility. Science 307:1434–1440

    Article  PubMed  CAS  Google Scholar 

  • Gradmann C (2006) Robert Koch and the white death: from tuberculosis to tuberculin. Microbes Infect 8:294–301

    Article  PubMed  CAS  Google Scholar 

  • Grotzinger T, Jensen K, Will H (1996) The interferon (IFN)-stimulated gene Sp100 promoter contains an IFN-gamma activation site and an imperfect IFN-stimulated response element which mediate type I IFN inducibility. J Biol Chem 271:25253–25260

    Article  PubMed  CAS  Google Scholar 

  • Growney JD, Scharf JM, Kunkel LM, Dietrich WF (2000) Evolutionary divergence of the mouse and human Lgn1/SMA repeat structures. Genomics 64:62–81

    Article  PubMed  CAS  Google Scholar 

  • Helke KL, Mankowski JL, Manabe YC (2005) Animal models of cavitation in pulmonary tuberculosis. Tuberculosis (Edinb) 86:337–348

    Article  Google Scholar 

  • Henson PM (2003) Possible roles for apoptosis and apoptotic cell recognition in inflammation and fibrosis. Am J Respir Cell Mol Biol 29:S70–S76

    PubMed  CAS  Google Scholar 

  • Hill AV (2006) Aspects of genetic susceptibility to human infectious diseases. Annu Rev Genet 40:469–486

    Article  PubMed  CAS  Google Scholar 

  • Hingley-Wilson SM, Sambandamurthy VK, Jacobs WR Jr (2003) Survival perspectives from the world’s most successful pathogen, Mycobacterium tuberculosis. Nat Immunol 4:949–955

    Article  PubMed  CAS  Google Scholar 

  • Hofmann TG, Will H (2003) Body language: the function of PML nuclear bodies in apoptosis regulation. Cell Death Differ 10:1290–1299

    Article  PubMed  CAS  Google Scholar 

  • Horlein AJ, Naar AM, Heinzel T, Torchia J, Gloss B, Kurokawa R, et al (1995) Ligand-independent repression by the thyroid hormone receptor mediated by a nuclear receptor co-repressor. Nature 377:397–404

    Article  PubMed  CAS  Google Scholar 

  • Jang HD, Yoon K, Shin YJ, Kim J, Lee SY (2004) PIAS3 suppresses NF-kappaB-mediated transcription by interacting with the p65/RelA subunit. J Biol Chem 279:24873–24880

    Article  PubMed  CAS  Google Scholar 

  • Jouanguy E, Altare F, Lamhamedi S, Revy P, Emile JF, Newport M, et al (1996) Interferon-gamma-receptor deficiency in an infant with fatal bacille Calmette-Guerin infection. N Engl J Med 335:1956–1961

    Article  PubMed  CAS  Google Scholar 

  • Kadereit S, Gewert DR, Galabru J, Hovanessian AG, Meurs EF (1993) Molecular cloning of two new interferon-induced, highly related nuclear phosphoproteins. J Biol Chem 268:24432–24441

    PubMed  CAS  Google Scholar 

  • Kallmann FJ, Reisner D (1943) Twin studies on the significance of genetic factors in tuberculosis. Am Rev Tuberc 47:549–574

    Google Scholar 

  • Kamath AB, Alt J, Debbabi H, Taylor C, Behar SM (2004) The major histocompatibility complex haplotype affects T-cell recognition of mycobacterial antigens but not resistance to Mycobacterium tuberculosis in C3H mice. Infect Immun 72:6790–6798

    Article  PubMed  CAS  Google Scholar 

  • Kaufmann SH, Schaible UE (2005) 100th anniversary of Robert Koch’s Nobel Prize for the discovery of the tubercle bacillus. Trends Microbiol 13:469–475

    Article  PubMed  CAS  Google Scholar 

  • Kaufmann SH, Cole ST, Mizrahi V, Rubin E, Nathan C (2005) Mycobacterium tuberculosis and the host response. J Exp Med 201:1693–1697

    Article  PubMed  CAS  Google Scholar 

  • Keane J (2005) TNF-blocking agents and tuberculosis: new drugs illuminate an old topic. Rheumatology 44:714–720

    Article  PubMed  CAS  Google Scholar 

  • Kornfeld H, Mancino G, Colizzi V (1999) The role of macrophage cell death in tuberculosis. Cell Death Differ 6:71–78

    Article  PubMed  CAS  Google Scholar 

  • Kramnik I, Demant P, Bloom BB (1998) Susceptibility to tuberculosis as a complex genetic trait: analysis using recombinant congenic strains of mice. Novartis Found Symp 217:120–131; discussion 132–137

    Article  PubMed  CAS  Google Scholar 

  • Kramnik I, Dietrich WF, Demant P, Bloom BR (2000) Genetic control of resistance to experimental infection with virulent Mycobacterium tuberculosis. Proc Natl Acad Sci USA 97:8560–8565

    Article  PubMed  CAS  Google Scholar 

  • Lakshmi B, Hall IM, Egan C, Alexander J, Leotta A, Healy J, et al (2006) Mouse genomic representational oligonucleotide microarray analysis: detection of copy number variations in normal and tumor specimens. Proc Natl Acad Sci U S A 103:11234–11239

    Article  PubMed  CAS  Google Scholar 

  • Lara-Pezzi E, Pezzi N, Prieto I, Barthelemy I, Carreiro C, Martinez A, et al (2004) Evidence of a transcriptional co-activator function of cohesin STAG/SA/Scc3. J Biol Chem 279:6553–6559

    Article  PubMed  CAS  Google Scholar 

  • Lavebratt C, Apt AS, Nikonenko BV, Schalling M, Schurr E (1999) Severity of tuberculosis in mice is linked to distal chromosome 3 and proximal chromosome 9. J Infect Dis 180:150–155

    Article  PubMed  CAS  Google Scholar 

  • Levin M, Newport MJ, D’Souza S, Kalabalikis P, Brown IN, Lenicker HM, et al (1995) Familial disseminated atypical mycobacterial infection in childhood: a human mycobacterial susceptibility gene? Lancet 345:79–83

    Article  PubMed  CAS  Google Scholar 

  • Liu PT, Stenger S, Li H, Wenzel L, Tan BH, Krutzik SR, et al (2006) Toll-like receptor triggering of a vitamin D-mediated human antimicrobial response. Science 311:1770–1773

    Article  PubMed  CAS  Google Scholar 

  • Lurie MB, Zappasodi P, Dannenberg AM Jr, Weiss GH (1952) On the mechanism of genetic resistance to tuberculosis and its mode of inheritance. Am J Hum Genet 4:302–314

    PubMed  CAS  Google Scholar 

  • Lurie MB, Zappasodi P, Tickner C (1955) On the nature of genetic resistance to tuberculosis in the light of the host-parasite relationships in natively resistant and susceptible rabbits. Am Rev Tuberc 72:297–329

    PubMed  CAS  Google Scholar 

  • Lynch CJ, Pierce-Chase CH, Dubos R (1965) A genetic study of susceptibility to experimental tuberculosis in mice infected with mammalian tubercle bacilli. J Exp Med 121:1051–1070

    Article  PubMed  CAS  Google Scholar 

  • Mackintosh CG, de Lisle GW, Collins DM, Griffin JF (2004) Mycobacterial diseases of deer. N Z Vet J 52:163–174

    PubMed  CAS  Google Scholar 

  • MacMicking J, Xie QW, Nathan C (1997) Nitric oxide and macrophage function. Annu Rev Immunol 15:323–350

    Article  PubMed  CAS  Google Scholar 

  • Maul GG, Negorev D, Bell P, Ishov AM (2000) Review: properties and assembly mechanisms of ND10, PML bodies, or PODs. J Struct Biol 129:278–287

    Article  PubMed  CAS  Google Scholar 

  • Medina E, North RJ (1998) Resistance ranking of some common inbred mouse strains to Mycobacterium tuberculosis and relationship to major histocompatibility complex haplotype and Nramp1 genotype. Immunology 93:270–274

    Article  PubMed  CAS  Google Scholar 

  • Mitsos LM, Cardon LR, Fortin A, Ryan L, LaCourse R, North RJ, et al (2000) Genetic control of susceptibility to infection with Mycobacterium tuberculosis in mice. Genes Immun 1:467–477

    Article  PubMed  CAS  Google Scholar 

  • Mitsos LM, Cardon LR, Ryan L, LaCourse R, North RJ, Gros P (2003) Susceptibility to tuberculosis: a locus on mouse chromosome 19 (Trl-4) regulates Mycobacterium tuberculosis replication in the lungs. Proc Natl Acad Sci U S A 100:6610–6615

    Article  PubMed  CAS  Google Scholar 

  • Newport MJ, Huxley CM, Huston S, Hawrylowicz CM, Oostra BA, Williamson R, et al (1996) A mutation in the interferon-gamma-receptor gene and susceptibility to mycobacterial infection. N Engl J Med 335:1941–1949

    Article  PubMed  CAS  Google Scholar 

  • Nicewonger J, Suck G, Bloch D, Swaminathan S (2004) Epstein-Barr virus (EBV) SM protein induces and recruits cellular Sp110b to stabilize mRNAs and enhance EBV lytic gene expression. J Virol 78:9412–9422

    Article  PubMed  CAS  Google Scholar 

  • Nikonenko BV, Averbakh MM Jr, Lavebratt C, Schurr E, Apt AS (2000) Comparative analysis of mycobacterial infections in susceptible I/St and resistant A/Sn inbred mice. Tuber Lung Dis 80:15–25

    Article  PubMed  CAS  Google Scholar 

  • North RJ, Jung YJ (2004) Immunity to tuberculosis. Annu Rev Immunol 22:599–623

    Article  PubMed  CAS  Google Scholar 

  • Onyebujoh P, Rook GA (2004) Tuberculosis. Nat Rev Microbiol 2:930–932

    Article  PubMed  CAS  Google Scholar 

  • Orme IM (2005) Mouse and guinea pig models for testing new tuberculosis vaccines. Tuberculosis (Edinb) 85:13–17

    Article  CAS  Google Scholar 

  • Orme IM (2006) Safety issues regarding new vaccines for tuberculosis with an emphasis on post-exposure vaccination. Tuberculosis (Edinb) 86:68–73

    Article  Google Scholar 

  • Ottenhoff TH, Verreck FA, Hoeve MA, van de Vosse E (2005) Control of human host immunity to mycobacteria. Tuberculosis (Edinb) 85:53–64

    Article  CAS  Google Scholar 

  • Pan H, Yan BS, Rojas M, Shebzukhov YV, Zhou H, Kobzik L, Higgins DE, Daly MJ, Bloom BR, Kramnik I (2005) Ipr1 gene mediates innate immunity to tuberculosis. Nature 434:767–772

    Article  PubMed  CAS  Google Scholar 

  • Pike JW, Pathrose P, Barmina O, Chang CY, McDonnell DP, Yamamoto H, Shevde NK (2003) LXXLL peptide antagonize 1 Synthetic 25-dihydroxyvitamin D3-dependent transcription. J Cell Biochem 88:252–258

    Article  PubMed  CAS  Google Scholar 

  • Purohit S, Kumar PG, Laloraya M, She JX (2005) Mapping DNA-binding domains of the autoimmune regulator protein. Biochem Biophys Res Commun 327:939–944

    Article  PubMed  CAS  Google Scholar 

  • Redon R, Ishikawa S, Fitch KR, Feuk L, Perry GH, Andrews TD, et al (2006) Global variation in copy number in the human genome. Nature 444:444–454

    Article  PubMed  CAS  Google Scholar 

  • Regad T, Chelbi-Alix MK (2001) Role and fate of PML nuclear bodies in response to interferon and viral infections. Oncogene 20:7274–7286

    Article  PubMed  CAS  Google Scholar 

  • Ren T, Zamboni DS, Roy CR, Dietrich WF, Vance RE (2006) Flagellin-deficient Legionella mutants evade caspase-1- and Naip5-mediated macrophage immunity. PLoS Pathog 2:e18

    Article  PubMed  CAS  Google Scholar 

  • Rich AR (1951) The pathogenesis of tuberculosis, 2nd edn. Charles C Thomas, Springfield, p 1028

    Google Scholar 

  • Rodrigo T, Cayla JA, Garcia de Olalla P, Galdos-Tanguis H, Jansa JM, Miranda P, et al (1997) Characteristics of tuberculosis patients who generate secondary cases. Int J Tuberc Lung Dis 1:352–357

    PubMed  CAS  Google Scholar 

  • Roscioli T, Cliffe ST, Bloch DB, Bell CG, Mullan G, Taylor PJ, et al (2006) Mutations in the gene encoding the PML nuclear body protein Sp110 are associated with immunodeficiency and hepatic veno-occlusive disease. Nat Genet 38:620–622

    Article  PubMed  CAS  Google Scholar 

  • Salgame P (2005) Host innate and Th1 responses and the bacterial factors that control Mycobacterium tuberculosis infection. Curr Opin Immunol 17:374–380

    Article  PubMed  CAS  Google Scholar 

  • Sanchez F, Radaeva TV, Nikonenko BV, Persson AS, Sengul S, Schalling M, et al (2003) Multigenic control of disease severity after virulent Mycobacterium tuberculosis infection in mice. Infect Immun 71:126–131

    Article  PubMed  CAS  Google Scholar 

  • Savkur RS, Burris TP (2004) The coactivator LXXLL nuclear receptor recognition motif. J Pept Res 63:207–212

    Article  PubMed  CAS  Google Scholar 

  • Sebat J, Lakshmi B, Troge J, Alexander J, Young J, Lundin P, et al (2004) Large-scale copy number polymorphism in the human genome. Science 305:525–528

    Article  PubMed  CAS  Google Scholar 

  • Sternsdorf T, Jensen K, Reich B, Will H (1999) The nuclear dot protein sp100, characterization of domains necessary for dimerization, subcellular localization, and modification by small ubiquitin-like modifiers. J Biol Chem 274:12555–12566

    Article  PubMed  CAS  Google Scholar 

  • Stranger BE, Forrest MS, Dunning M, Ingle CE, Beazley C, Thorne N, et al (2007) Relative impact of nucleotide and copy number variation on gene expression phenotypes. Science 315:848–853

    Article  PubMed  CAS  Google Scholar 

  • Sugawara I, Yamada H, Mizuno S (2004) Pulmonary tuberculosis in spontaneously diabetic goto kakizaki rats. Tohoku J Exp Med 204:135–145

    Article  PubMed  Google Scholar 

  • Surdo PL, Bottomley MJ, Sattler M, Scheffzek K (2003) Crystal structure and nuclear magnetic resonance analyses of the SAND domain from glucocorticoid modulatory element binding protein-1 reveals deoxyribonucleic acid and zinc binding regions. Mol Endocrinol 17:1283–1295

    Article  PubMed  CAS  Google Scholar 

  • Szeszko JS, Healy B, Stevens H, Balabanova Y, Drobniewski F, Todd JA, et al (2007) Resequencing and association analysis of the SP110 gene in adult pulmonary tuberculosis. Hum Genet 121:155–160

    Article  PubMed  CAS  Google Scholar 

  • Tao Y, Kupfer R, Stewart BJ, Williams-Skipp C, Crowell CK, Patel DD, et al (2006) AIRE recruits multiple transcriptional components to specific genomic regions through tethering to nuclear matrix. Mol Immunol 43:335–345

    Article  PubMed  CAS  Google Scholar 

  • Thye T, Browne EN, Chinbuah MA, Gyapong J, Osei I, Owusu-Dabo E, et al (2006) No associations of human pulmonary tuberculosis with Sp110 variants. J Med Genet 43:e32

    Article  PubMed  CAS  Google Scholar 

  • Tosh K, Campbell SJ, Fielding K, Sillah J, Bah B, Gustafson P, Manneh K, Lisse I, Sirugo G, Bennett S, Aaby P, McAdam KP, Bah-Sow O, Lienhardt C, Kramnik I, Hill AV (2006) Variants In the SP110 gene are associated with genetic susceptibility to tuberculosis In West Africa. Proc Natl Acad Sci U S A 103:10364–10368

    Article  PubMed  CAS  Google Scholar 

  • Traut W, Rahn IM, Winking H, Kunze B, Weichehan D (2001) Evolution of a 6–200 Mb long-range repeat cluster in the genus Mus. Chromosoma 110:247–252

    Article  PubMed  CAS  Google Scholar 

  • Vidal SM, Malo D, Vogan K, Skamene E, Gros P (1993) Natural resistance to infection with intracellular parasites: isolation of a candidate for Bcg. Cell 73:469–485

    Article  PubMed  CAS  Google Scholar 

  • Watashi K, Hijikata M, Tagawa A, Doi T, Marusawa H, Shimotohno K (2003) Modulation of retinoid signaling by a cytoplasmic viral protein via sequestration of Sp110b, a potent transcriptional corepressor of retinoic acid receptor, from the nucleus. Mol Cell Biol 23:7498–7509

    Article  PubMed  CAS  Google Scholar 

  • Watson VE, Hill LL, Owen-Schaub LB, Davis DW, McConkey DJ, Jagannath C, et al (2000) Apoptosis in mycobacterium tuberculosis infection in mice exhibiting varied immunopathology. J Pathol 190:211–220

    Article  PubMed  CAS  Google Scholar 

  • Weichenhan D, Kunze B, Winking H, van Geel M, Osoegawa K, de Jong PJ, et al (2001) Source and component genes of a 6–200 Mb gene cluster in the house mouse. Mamm Genome 12:590–594

    Article  PubMed  CAS  Google Scholar 

  • WHO (2006) Global tuberculosis control—surveillance, planning. financing. In: WHO Report 2006. WHO, Geneva

    Google Scholar 

  • Wright S, Lewis PA (1921) Factors in the resistance of guinea pigs to tuberculosis, with especial regard to inbreeding and heredity. Am Nat 55:20–50

    Article  Google Scholar 

  • Yan BS, Kirby A, Shebzukhov YV, Daly MJ, Kramnik I (2006) Genetic architecture of tuberculosis resistance in a mouse model of infection. Genes Immun 7:201–210

    Article  PubMed  CAS  Google Scholar 

  • Yan BS, Pichugin AV, Jobe O, Helming L, Eruslanov EB, Gutierrez-Pabello JA, Rojas M, Shebzukhov YV, Kobzik L, Kramnik I (2007) Progression of pulmonary tuberculosis and efficiency of bacillus Calmette-Guerin vaccination are genetically controlled via a common sst1-mediated mechanism of innate immunity. J Immunol 179:6919–6932

    PubMed  CAS  Google Scholar 

  • Zamboni DS, Kobayashi KS, Kohlsdorf T, Ogura Y, Long EM, Vance RE, et al (2006) The Birc1e cytosolic pattern-recognition receptor contributes to the detection and control of Legionella pneumophila infection. Nat Immunol 7:318–325

    Article  PubMed  CAS  Google Scholar 

  • Zhong S, Salomoni P, Pandolfi PP (2000) The transcriptional role of PML and the nuclear body. Nat Cell Biol 2:E85–90

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kramnik, I. (2008). Genetic Dissection of Host Resistance to Mycobacterium tuberculosis: The sst1 Locus and the Ipr1 Gene. In: Beutler, B. (eds) Immunology, Phenotype First: How Mutations Have Established New Principles and Pathways in Immunology. Current Topics in Microbiology and Immunology, vol 321. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75203-5_6

Download citation

Publish with us

Policies and ethics