A Role for RNAi in Heterochromatin Formation in Drosophila

  • Nicole C. Riddle
  • Sarah C. R. Elgin
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 320)


Heterochromatin is a specialized form of DNA packaging that results in a transcriptionally inactive conformation. While much progress has been made in characterizing the heterochromatin structure biochemically and via its effects on genes and transgenes, very little is known about how heterochromatin formation is initiated. Recent evidence from the yeast Saccharomyces pombe suggests the involvement of the RNA interference (RNAi) machinery in heterochromatin formation, and in particular in the targeting of the heterochromatin machinery to specific sites in the genome. In this article, we review the evidence for an involvement of RNAi in heterochromatin formation in the model system Drosophila melanogaster. It appears that while there are numerous threads that connect heterochromatin formation and gene silencing with the RNAi pathways in Drosophila, a direct role for RNAi in particular in the targeting of heterochromatin formation is still lacking.


Transposable Element Polytene Chromosome Heterochromatin Formation Transcriptional Gene Silence RNAi Machinery 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Amino acids


Alcohol dehydrogenase


Adenine triphosphate


Chromatin immunoprecipitation


Double-stranded RNA


Enhancer of variegation


Histone 3 lysine 4


Histone 3 methylated at lysine 9


Histone deacetylase


Heterochromatin protein 1


Iosine-containing RNA


Long terminal repeat




Micrococcal nuclease


Messenger RNA


Position effect variegation


Repeat associated small interfering RNA


RNA-induced silencing complex


RNA-induced transcriptional silencing


RNA interference


Small interfering RNA


Suppressor of variegation


Tudor SN


Vasa intronic gene


Adenosine deaminase


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allshire RC, Javerzat JP, Redhead NJ, Cranston G (1994) Position effect variegation at fission yeast centromeres. Cell 76:157–169.PubMedCrossRefGoogle Scholar
  2. Aravin AA, Naumova NM, Tulin AV, Vagin VV, Rozovsky YM, Gvozdev VA (2001) Double-stranded RNA-mediated silencing of genomic tandem repeats and transposable elements in the D. melanogaster germline. Curr Biol 11:1017–1027.PubMedCrossRefGoogle Scholar
  3. Aravin AA, Lagos-Quintana M, Yalcin A, Zavolan M, Marks D, Snyder B, Gaasterland T, Meyer J, Tuschl T (2003) The small RNA profile during Drosophila melanogaster development. Dev Cell 5:337–350.PubMedCrossRefGoogle Scholar
  4. Ashburner M, Golic KG, Hawley RS (2005) Drosophila: a laboratory handbook. Cold Spring Harbor Laboratory Press, Cold Spring Harbor.Google Scholar
  5. Aufsatz W, Mette MF, van der Winden J, Matzke AJ, Matzke M (2002) RNA-directed DNA methylation in Arabidopsis. Proc Natl Acad Sci U S A 99 [Suppl 4]:16499–16506.PubMedCrossRefGoogle Scholar
  6. Aulner N, Monod C, Mandicourt G, Jullien D, Cuvier O, Sall A, Janssen S, Laemmli UK, Kas E (2002) The AT-hook protein D1 is essential for Drosophila melanogaster development and is implicated in position-effect variegation. Mol Cell Biol 22:1218–1232.PubMedCrossRefGoogle Scholar
  7. Bannister AJ, Zegerman P, Partridge JF, Miska EA, Thomas JO, Allshire RC, Kouzarides T (2001) Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature 410:120–124.PubMedCrossRefGoogle Scholar
  8. Barigozzi C, Dolfini S, Fraccaro M, Raimondi GR, Tiepolo L (1966) In vitro study of the DNA replication patterns of somatic chromosomes of Drosophila melanogaster. Exp Cell Res 43:231–234.PubMedCrossRefGoogle Scholar
  9. Bernstein E, Caudy AA, Hammond SM, Hannon GJ (2001) Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409:363–366.PubMedCrossRefGoogle Scholar
  10. Blumenstiel JP, Hartl DL (2005) Evidence for maternally transmitted small interfering RNA in the repression of transposition in Drosophila virilis. Proc Natl Acad Sci U S A 102: 15965–15970.PubMedCrossRefGoogle Scholar
  11. Brennecke J, Aravin AA, Stark A, Dus M, Kellis M, Sachidanandam R, Hannon GJ (2007) Discrete small RNA-generating loci as master regulators of transposon activity in Drosophila. Cell 128:1089–1103.PubMedCrossRefGoogle Scholar
  12. Carrozza MJ, Li B, Florens L, Suganuma T, Swanson SK, Lee KK, Shia WJ, Anderson S, Yates J, Washburn MP, Workman JL (2005) Histone H3 methylation by Set2 directs deacetylation of coding regions by Rpd3S to suppress spurious intragenic transcription. Cell 123:581–592.PubMedCrossRefGoogle Scholar
  13. Caudy AA, Myers M, Hannon GJ, Hammond SM (2002) Fragile X-related protein and VIG associate with the RNA interference machinery. Genes Dev 16:2491–2496.PubMedCrossRefGoogle Scholar
  14. Celniker SE, Rubin GM (2003) The Drosophila melanogaster genome. Annu Rev Genomics Hum Genet 4:89–117.PubMedCrossRefGoogle Scholar
  15. Celotto AM, Graveley BR (2002) Exon-specific RNAi: a tool for dissecting the functional relevance of alternative splicing. Rna 8:718–724.PubMedCrossRefGoogle Scholar
  16. Cortes A, Huertas D, Fanti L, Pimpinelli S, Marsellach FX, Pina B, Azorin F (1999) DDP1, a single-stranded nucleic acid-binding protein of Drosophila, associates with pericentric heterochromatin and is functionally homologous to the yeast Scp160p, which is involved in the control of cell ploidy. EMBO J 18:3820–3833.PubMedCrossRefGoogle Scholar
  17. Cryderman DE, Tang H, Bell C, Gilmour DS, Wallrath LL (1999) Heterochromatic silencing of Drosophila heat shock genes acts at the level of promoter potentiation. Nucleic Acids Res 27:3364–3370.PubMedCrossRefGoogle Scholar
  18. Csink AK, Linsk R, Birchler JA (1994) The Lighten up (Lip) gene of Drosophila melanogaster, a modifier of retroelement expression, position effect variegation and white locus insertion alleles. Genetics 138:153–163.PubMedGoogle Scholar
  19. Deshpande G, Calhoun G, Schedl P (2005) Drosophila argonaute-2 is required early in embryogenesis for the assembly of centric/centromeric heterochromatin, nuclear division, nuclear migration, and germ-cell formation. Genes Dev 19:1680–1685.PubMedCrossRefGoogle Scholar
  20. Dimitri P, Corradini N, Rossi F, Mei E, Zhimulev IF, Verni F (2005) Transposable elements as artisans of the heterochromatic genome in Drosophila melanogaster. Cytogenet Genome Res 110:165–172.PubMedCrossRefGoogle Scholar
  21. Dorer DR, Henikoff S (1994) Expansions of transgene repeats cause heterochromatin formation and gene silencing in Drosophila. Cell 77:993–1002.PubMedCrossRefGoogle Scholar
  22. Eissenberg JC, James TC, Foster-Hartnett DM, Hartnett T, Ngan V, Elgin SC (1990) Mutation in a heterochromatin-specific chromosomal protein is associated with suppression of position-effect variegation in Drosophila melanogaster. Proc Natl Acad Sci U S A 87:9923–9927.PubMedCrossRefGoogle Scholar
  23. Eissenberg JC, Morris GD, Reuter G, Hartnett T (1992) The heterochromatin-associated protein HP-1 is an essential protein in Drosophila with dosage-dependent effects on position-effect variegation. Genetics 131:345–352.PubMedGoogle Scholar
  24. Fanti L, Dorer DR, Berloco M, Henikoff S, Pimpinelli S (1998) Heterochromatin protein 1 binds transgene arrays. Chromosoma 107:286–292.PubMedCrossRefGoogle Scholar
  25. Fernandez HR, Kavi HH, Xie W, Birchler JA (2005) Heterochromatin: on the ADAR radar? Curr Biol 15:R132–R134.PubMedCrossRefGoogle Scholar
  26. Festenstein R, Sharghi-Namini S, Fox M, Roderick K, Tolaini M, Norton T, Saveliev A, Kioussis D, Singh P (1999) Heterochromatin protein 1 modifies mammalian PEV in a dose- and chromosomal-context-dependent manner. Nat Genet 23:457–461.PubMedCrossRefGoogle Scholar
  27. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391: 806–811.CrossRefGoogle Scholar
  28. Foe VE, Odell GM, Edgar BA (1993) Mitosis and morphogenesis in the Drosophila embryo: point and counterpoint. In: Bate M, Arias AM (eds) The development of Drosophila melanogaster. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 149–300.Google Scholar
  29. Forstemann K, Tomari Y, Du T, Vagin VV, Denli AM, Bratu DP, Klattenhoff C, Theurkauf WE, Zamore PD (2005) Normal microRNA maturation and germ-line stem cell maintenance requires Loquacious, a double-stranded RNA-binding domain protein. PLoS Biol 3:e236.PubMedCrossRefGoogle Scholar
  30. Fukagawa T, Nogami M, Yoshikawa M, Ikeno M, Okazaki T, Takami Y, Nakayama T, Oshimura M (2004) Dicer is essential for formation of the heterochromatin structure in vertebrate cells. Nat Cell Biol 6:784–791.PubMedCrossRefGoogle Scholar
  31. Galiana-Arnoux D, Dostert C, Schneemann A, Hoffmann JA, Imler JL (2006) Essential function in vivo for Dicer-2 in host defense against RNA viruses in Drosophila. Nat Immunol 7:590–597.PubMedCrossRefGoogle Scholar
  32. Gottschling DE, Aparicio OM, Billington BL, Zakian VA (1990) Position effect at S. cerevisiae telomeres: reversible repression of Pol II transcription. Cell 63:751–762.PubMedCrossRefGoogle Scholar
  33. Gregory RI, Chendrimada TP, Cooch N, Shiekhattar R (2005) Human RISC couples microRNA biogenesis and posttranscriptional gene silencing. Cell 123:631–640.PubMedCrossRefGoogle Scholar
  34. Grewal SI, Elgin SC (2002) Heterochromatin: new possibilities for the inheritance of structure. Curr Opin Genet Dev 12:178–187.PubMedCrossRefGoogle Scholar
  35. Grimaud C, Bantignies F, Pal-Bhadra M, Ghana P, Bhadra U, Cavalli G (2006) RNAi components are required for nuclear clustering of Polycomb group response elements. Cell 124:957–971.PubMedCrossRefGoogle Scholar
  36. Gunawardane LS, Saito K, Nishida KM, Miyoshi K, Kawamura Y, Nagami T, Siomi H, Siomi MC (2007) A slicer-mediated mechanism for repeat-associated siRNA 5d end formation in Drosophila. Science 315:1587–1590.PubMedCrossRefGoogle Scholar
  37. Gvozdev VA, Aravin AA, Abramov YA, Klenov MS, Kogan GL, Lavrov SA, Naumova NM, Olenkina OM, Tulin AV, Vagin VV (2003) Stellate repeats: targets of silencing and modules causing cis-inactivation and trans-activation. Genetica 117:239–245.PubMedCrossRefGoogle Scholar
  38. Hall IM, Shankaranarayana GD, Noma K, Ayoub N, Cohen A, Grewal SI (2002) Establishment and maintenance of a heterochromatin domain. Science 297:2232–2237.PubMedCrossRefGoogle Scholar
  39. Hamilton AJ, Baulcombe DC (1999) A species of small antisense RNA in posttranscriptional gene silencing in plants. Science 286:950–952.PubMedCrossRefGoogle Scholar
  40. Hammond SM, Boettcher S, Caudy AA, Kobayashi R, Hannon GJ (2001) Argonaute2, a link between genetic and biochemical analyses of RNAi. Science 293:1146–1150.PubMedCrossRefGoogle Scholar
  41. Haynes KA, Leibovitch BA, Rangwala SH, Craig C, Elgin SC (2004) Analyzing heterochromatin formation using chromosome 4 of Drosophila melanogaster. Cold Spring Harb Symp Quant Biol 69:267–272.PubMedCrossRefGoogle Scholar
  42. Haynes KA, Caudy AA, Collins L, Elgin SC (2006) Element 1360 and RNAi components contribute to HP1-dependent silencing of a pericentric reporter. Curr Biol 16:2222–2227.PubMedCrossRefGoogle Scholar
  43. Hearn MG, Hedrick A, Grigliatti TA, Wakimoto BT (1991) The effect of modifiers of position-effect variegation on the variegation of heterochromatic genes of Drosophila melanogaster. Genetics 128:785–797.PubMedGoogle Scholar
  44. Heitz E (1928) Das Heterochromatin der Moose. Jb Wiss Bot 69:728–818.Google Scholar
  45. Huertas D, Cortes A, Casanova J, Azorin F (2004) Drosophila DDP1, a multi-KH-domain protein, contributes to centromeric silencing and chromosome segregation. Curr Biol 14:1611–1620.PubMedCrossRefGoogle Scholar
  46. Jackson JP, Lindroth AM, Cao X, Jacobsen SE (2002) Control of CpNpG DNA methylation by the KRYPTONITE histone H3 methyltransferase. Nature 416:556–560.PubMedCrossRefGoogle Scholar
  47. James TC, Elgin SC (1986) Identification of a nonhistone chromosomal protein associated with heterochromatin in Drosophila melanogaster and its gene. Mol Cell Biol 6:3862–3872.PubMedGoogle Scholar
  48. James TC, Eissenberg JC, Craig C, Dietrich V, Hobson A, Elgin SC (1989) Distribution patterns of HP1, a heterochromatin-associated nonhistone chromosomal protein of Drosophila. Eur J Cell Biol 50:170–180.PubMedGoogle Scholar
  49. Jiang F, Ye X, Liu X, Fincher L, McKearin D, Liu Q (2005) Dicer-1 and R3D1-L catalyze microRNA maturation in Drosophila. Genes Dev 19:1674–1679.PubMedCrossRefGoogle Scholar
  50. Jorgensen RA, Cluster PD, English J, Que Q, Napoli CA (1996) Chalcone synthase cosuppression phenotypes in petunia flowers: comparison of sense vs. antisense constructs and single-copy vs. complex T-DNA sequences. Plant Mol Biol 31:957–973.PubMedCrossRefGoogle Scholar
  51. Kalmykova AI, Klenov MS, Gvozdev VA (2005) Argonaute protein PIWI controls mobilization of retrotransposons in the Drosophila male germline. Nucleic Acids Res 33:2052–2059.PubMedCrossRefGoogle Scholar
  52. Keogh MC, Kurdistani SK, Morris SA, Ahn SH, Podolny V, Collins SR, Schuldiner M, Chin K, Punna T, Thompson NJ, Boone C, Emili A, Weissman JS, Hughes TR, Strahl BD, Grunstein M, Greenblatt JF, Buratowski S, Krogan NJ (2005) Cotranscriptional set2 methylation of histone H3 lysine 36 recruits a repressive Rpd3 complex. Cell 123:593–605.PubMedCrossRefGoogle Scholar
  53. Lachner M, O’Carroll D, Rea S, Mechtler K, Jenuwein T (2001) Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature 410:116–120.PubMedCrossRefGoogle Scholar
  54. Lau NC, Seto AG, Kim J, Kuramochi-Miyagawa S, Nakano T, Bartel DP, Kingston RE (2006) Characterization of the piRNA complex from rat testes. Science 313:363–367.PubMedCrossRefGoogle Scholar
  55. Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J, Lee J, Provost P, Radmark O, Kim S, Kim VN (2003) The nuclear RNase III Drosha initiates microRNA processing. Nature 425:415–419.PubMedCrossRefGoogle Scholar
  56. Lee YS, Nakahara K, Pham JW, Kim K, He Z, Sontheimer EJ, Carthew RW (2004) Distinct roles for Drosophila Dicer-1 and Dicer-2 in the siRNA/miRNA silencing pathways. Cell 117:69–81.PubMedCrossRefGoogle Scholar
  57. Leuschner PJ, Obernosterer G, Martinez J (2005) MicroRNAs: Loquacious speaks out. Curr Biol 15:R603–R605.PubMedCrossRefGoogle Scholar
  58. Lin H (2007) piRNAs in the germ line. Science 316:397.PubMedCrossRefGoogle Scholar
  59. Liu Q, Rand TA, Kalidas S, Du F, Kim HE, Smith DP, Wang X (2003) R2D2, a bridge between the initiation and effector steps of the Drosophila RNAi pathway. Science 301:1921–1925.PubMedCrossRefGoogle Scholar
  60. Llave C, Kasschau KD, Rector MA, Carrington JC (2002) Endogenous and silencing-associated small RNAs in plants. Plant Cell 14:1605–1619.PubMedCrossRefGoogle Scholar
  61. Locke J, McDermid HE (1993) Analysis of Drosophila chromosome 4 using pulsed field gel electrophoresis. Chromosoma 102:718–723.PubMedCrossRefGoogle Scholar
  62. Locke J, Kotarski MA, Tartof KD (1988) Dosage-dependent modifiers of position effect variegation in Drosophila and a mass action model that explains their effect. Genetics 120:181–198.PubMedGoogle Scholar
  63. Lu BY, Emtage PC, Duyf BJ, Hilliker AJ, Eissenberg JC (2000) Heterochromatin protein 1 is required for the normal expression of two heterochromatin genes in Drosophila. Genetics 155:699–708.PubMedGoogle Scholar
  64. Lyon MF (1999) X-chromosome inactivation. Curr Biol 9:R235–R237.PubMedCrossRefGoogle Scholar
  65. Marin L, Lehmann M, Nouaud D, Izaabel H, Anxolabehere D, Ronsseray S (2000) P-Element repression in Drosophila melanogaster by a naturally occurring defective telomeric P copy. Genetics 155:1841–1854.PubMedGoogle Scholar
  66. Matzke MA, Primig M, Trnovsky J, Matzke AJ (1989) Reversible methylation and inactivation of marker genes in sequentially transformed tobacco plants. EMBO J 8:643–649.PubMedGoogle Scholar
  67. Megosh HB, Cox DN, Campbell C, Lin H (2006) The role of PIWI and the miRNA machinery in Drosophila germline determination. Curr Biol 16:1884–1894.PubMedCrossRefGoogle Scholar
  68. Metzlaff M, O’Dell M, Cluster PD, Flavell RB (1997) RNA-mediated RNA degradation and chalcone synthase A silencing in petunia. Cell 88:845–854.PubMedCrossRefGoogle Scholar
  69. Miyoshi K, Tsukumo H, Nagami T, Siomi H, Siomi MC (2005) Slicer function of Drosophila Argonautes and its involvement in RISC formation. Genes Dev 19:2837–2848.PubMedCrossRefGoogle Scholar
  70. Motamedi MR, Verdel A, Colmenares SU, Gerber SA, Gygi SP, Moazed D (2004) Two RNAi complexes, RITS and RDRC, physically interact and localize to noncoding centromeric RNAs. Cell 119:789–802.PubMedCrossRefGoogle Scholar
  71. Murchison EP, Hannon GJ (2004) miRNAs on the move: miRNA biogenesis and the RNAi machinery. Curr Opin Cell Biol 16:223–229.PubMedCrossRefGoogle Scholar
  72. Napoli C, Lemieux C, Jorgensen R (1990) Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans. Plant Cell 2:279–289.PubMedCrossRefGoogle Scholar
  73. Noma K, Sugiyama T, Cam H, Verdel A, Zofall M, Jia S, Moazed D, Grewal SI (2004) RITS acts in cis to promote RNA interference-mediated transcriptional and post-transcriptional silencing. Nat Genet 36:1174–1180.PubMedCrossRefGoogle Scholar
  74. Okamura K, Ishizuka A, Siomi H, Siomi MC (2004) Distinct roles for Argonaute proteins in small RNA-directed RNA cleavage pathways. Genes Dev 18:1655–1666.PubMedCrossRefGoogle Scholar
  75. Pal-Bhadra M, Bhadra U, Birchler JA (1997) Cosuppression in Drosophila: gene silencing of Alcohol dehydrogenase by white-Adh transgenes is Polycomb dependent. Cell 90:479–490.PubMedCrossRefGoogle Scholar
  76. Pal-Bhadra M, Bhadra U, Birchler JA (2002) RNAi related mechanisms affect both transcriptional and posttranscriptional transgene silencing in Drosophila. Mol Cell 9:315–327.PubMedCrossRefGoogle Scholar
  77. Pal-Bhadra M, Leibovitch BA, Gandhi SG, Rao M, Bhadra U, Birchler JA, Elgin SC (2004) Heterochromatic silencing and HP1 localization in Drosophila are dependent on the RNAi machinery. Science 303:669–672.PubMedCrossRefGoogle Scholar
  78. Pidoux AL, Allshire RC (2005) The role of heterochromatin in centromere function. Philos Trans R Soc Lond B Biol Sci 360:569–579.PubMedCrossRefGoogle Scholar
  79. Rehwinkel J, Natalin P, Stark A, Brennecke J, Cohen SM, Izaurralde E (2006) Genome-wide analysis of mRNAs regulated by Drosha and Argonaute proteins in Drosophila melanogaster. Mol Cell Biol 26:2965–2975.PubMedCrossRefGoogle Scholar
  80. Reiss D, Josse T, Anxolabehere D, Ronsseray S (2004) aubergine mutations in Drosophila melanogaster impair P cytotype determination by telomeric P elements inserted in heterochromatin. Mol Genet Genomics 272:336–343.PubMedCrossRefGoogle Scholar
  81. Roignant JY, Carre C, Mugat B, Szymczak D, Lepesant JA, Antoniewski C (2003) Absence of transitive and systemic pathways allows cell-specific and isoform-specific RNAi in Drosophila. Rna 9:299–308.PubMedCrossRefGoogle Scholar
  82. Ronsseray S, Lehmann M, Nouaud D, Anxolabehere D (1996) The regulatory properties of autonomous subtelomeric P elements are sensitive to a Suppressor of variegation in Drosophila melanogaster. Genetics 143:1663–1674.PubMedGoogle Scholar
  83. Saito K, Ishizuka A, Siomi H, Siomi MC (2005) Processing of pre-microRNAs by the Dicer-1-Loquacious complex in Drosophila cells. PLoS Biol 3:e235.PubMedCrossRefGoogle Scholar
  84. Saito K, Nishida KM, Mori T, Kawamura Y, Miyoshi K, Nagami T, Siomi H, Siomi MC (2006) Specific association of Piwi with rasiRNAs derived from retrotransposon and heterochromatic regions in the Drosophila genome. Genes Dev 20:2214–2222.PubMedCrossRefGoogle Scholar
  85. Sandler L, Szauter P (1978) The effect of recombination-defective meiotic mutants on fourth-chromosome crossing over in Drosophila melanogaster. Genetics 90:699–712.PubMedGoogle Scholar
  86. Sarot E, Payen-Groschene G, Bucheton A, Pelisson A (2004) Evidence for a piwi-dependent RNA silencing of the gypsy endogenous retrovirus by the Drosophila melanogaster flamenco gene. Genetics 166:1313–1321.PubMedCrossRefGoogle Scholar
  87. Schotta G, Ebert A, Krauss V, Fischer A, Hoffmann J, Rea S, Jenuwein T, Dorn R, Reuter G (2002) Central role of Drosophila SU(VAR) 3–9 in histone H3–K9 methylation and heterochromatic gene silencing. EMBO J 21:1121–1131.PubMedCrossRefGoogle Scholar
  88. Schotta G, Ebert A, Dorn R, Reuter G (2003) Position-effect variegation and the genetic dissection of chromatin regulation in Drosophila. Semin Cell Dev Biol 14:67–75.Google Scholar
  89. Shaffer CD, Cenci G, Thompson B, Stephens GE, Slawson EE, Adu-Wusu K, Craig C, Gatti M, Elgin SCR (2006) The large isoform of Drosophila melanogaster Heterochromatin Protein 2 plays a critical role in gene silencing and chromosome structure. Genetics 174:1189–1204.PubMedCrossRefGoogle Scholar
  90. Slawson EE, Shaffer CD, Malone CD, Leung W, Kellmann E, Shevchek RB, Craig CA, Bloom SM, Bogenpohl J 2nd, Dee J, Morimoto ET, Myoung J, Nett AS, Ozsolak F, Tittiger ME, Zeug A, Pardue ML, Buhler J, Mardis ER, Elgin SC (2006) Comparison of dot chromosome sequences from D. melanogaster and D. virilis reveals an enrichment of DNA transposon sequences in heterochromatic domains. Genome Biol 7:R15.Google Scholar
  91. Sontheimer EJ (2005) Assembly and function of RNA silencing complexes. Nat Rev Mol Cell Biol 6:127–138.PubMedCrossRefGoogle Scholar
  92. Soppe WJ, Jasencakova Z, Houben A, Kakutani T, Meister A, Huang MS, Jacobsen SE, Schubert I, Fransz PF (2002) DNA methylation controls histone H3 lysine 9 methylation and heterochromatin assembly in Arabidopsis. EMBO J 21:6549–6559.Google Scholar
  93. Spierer A, Seum C, Delattre M, Spierer P (2005) Loss of the modifiers of variegation Su(var) 3–7 or HP1 impacts male X polytene chromosome morphology and dosage compensation. J Cell Sci 118:5047–5057.PubMedCrossRefGoogle Scholar
  94. Stapleton W, Das S, McKee BD (2001) A role of the Drosophila homeless gene in repression of Stellate in male meiosis. Chromosoma 110:228–240.PubMedCrossRefGoogle Scholar
  95. Sugiyama T, Cam H, Verdel A, Moazed D, Grewal SI (2005) RNA-dependent RNA polymerase is an essential component of a self-enforcing loop coupling heterochromatin assembly to siRNA production. Proc Natl Acad Sci U S A 102:152–157.PubMedCrossRefGoogle Scholar
  96. Sun FL, Cuaycong MH, Craig CA, Wallrath LL, Locke J, Elgin SC (2000) The fourth chromosome of Drosophila melanogaster: interspersed euchromatic and heterochromatic domains. Proc Natl Acad Sci U S A 97:5340–5345.PubMedCrossRefGoogle Scholar
  97. Sun FL, Cuaycong MH, Elgin SC (2001) Long-range nucleosome ordering is associated with gene silencing in Drosophila melanogaster pericentric heterochromatin. Mol Cell Biol 21:2867–2879.PubMedCrossRefGoogle Scholar
  98. Sun FL, Haynes K, Simpson CL, Lee SD, Collins L, Wuller J, Eissenberg JC, Elgin SC (2004) cis-Acting determinants of heterochromatin formation on Drosophila melanogaster chromosome four. Mol Cell Biol 24:8210–8220.PubMedCrossRefGoogle Scholar
  99. Tomari Y, Du T, Haley B, Schwarz DS, Bennett R, Cook HA, Koppetsch BS, Theurkauf WE, Zamore PD (2004) RISC assembly defects in the Drosophila RNAi mutant armitage. Cell 116:831–841.PubMedCrossRefGoogle Scholar
  100. Tran RK, Zilberman D, de Bustos C, Ditt RF, Henikoff JG, Lindroth AM, Delrow J, Boyle T, Kwong S, Bryson TD, Jacobsen SE, Henikoff S (2005) Chromatin and siRNA pathways cooperate to maintain DNA methylation of small transposable elements in Arabidopsis. Genome Biol 6:R90.Google Scholar
  101. Vagin VV, Sigova A, Li C, Seitz H, Gvozdev V, Zamore PD (2006) A distinct small RNA pathway silences selfish genetic elements in the germline. Science 313:320–324.PubMedCrossRefGoogle Scholar
  102. van der Krol AR, Mur LA, Beld M, Mol JN, Stuitje AR (1990) Flavonoid genes in petunia: addition of a limited number of gene copies may lead to a suppression of gene expression. Plant Cell 2:291–299.PubMedCrossRefGoogle Scholar
  103. Verdel A, Jia S, Gerber S, Sugiyama T, Gygi S, Grewal SI, Moazed D (2004) RNAi-mediated targeting of heterochromatin by the RITS complex. Science 303:672–676.PubMedCrossRefGoogle Scholar
  104. Volpe TA, Kidner C, Hall IM, Teng G, Grewal SI, Martienssen RA (2002) Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi. Science 297:1833–1837.PubMedCrossRefGoogle Scholar
  105. Wallrath LL (1998) Unfolding the mysteries of heterochromatin. Curr Opin Genet Dev 8:147–153.PubMedCrossRefGoogle Scholar
  106. Wallrath LL, Elgin SC (1995) Position effect variegation in Drosophila is associated with an altered chromatin structure. Genes Dev 9:1263–1277.PubMedCrossRefGoogle Scholar
  107. Wang Q, Zhang Z, Blackwell K, Carmichael GG (2005) Vigilins bind to promiscuously A-to-I-edited RNAs and are involved in the formation of heterochromatin. Curr Biol 15:384–391.PubMedCrossRefGoogle Scholar
  108. Wang XH, Aliyari R, Li WX, Li HW, Kim K, Carthew R, Atkinson P, Ding SW (2006) RNA interference directs innate immunity against viruses in adult Drosophila. Science 312:452–454.Google Scholar
  109. Weiler KS, Wakimoto BT (1995) Heterochromatin and gene expression in Drosophila. Annu Rev Genet 29:577–605.PubMedCrossRefGoogle Scholar
  110. Xie Z, Johansen LK, Gustafson AM, Kasschau KD, Lellis AD, Zilberman D, Jacobsen SE, Carrington JC (2004) Genetic and functional diversification of small RNA pathways in plants. PLoS Biol 2:E104.PubMedCrossRefGoogle Scholar
  111. Zambon RA, Vakharia VN, Wu LP (2006) RNAi is an antiviral immune response against a dsRNA virus in Drosophila melanogaster. Cell Microbiol 8:880–889.CrossRefGoogle Scholar
  112. Zhimulev IF, Belyaeva ES, Fomina OV, Protopopov MO, Bolshakov VN (1986) Cytogenetic and molecular aspects of position effect variegation in Drosophila melanogaster. I. Morphology and genetic activity of the 2AB region in chromosome rearrangement T(1;2) dorvar7. Chromosoma 94:492–504.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Nicole C. Riddle
  • Sarah C. R. Elgin
    • 1
  1. 1.Department of BiologyWashington UniversityLouisUSA

Personalised recommendations