Advertisement

RNA Interference in Mammalian Cell Systems

  • Patrick J. Paddison
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 320)

Abstract

The use of RNA interference (RNAi) to evoke gene silencing in mammalian cells has almost become routine laboratory practice. Through refinement of double-stranded RNA (dsRNA) triggers of RNAi and creation of genome-scale libraries, the first genome-wide loss of function screens have been carried out in mammals. This review discusses some of the key features of RNAi in mammalian systems.

Keywords

RNAi Pathway RNAi Screen PIWI Domain Mammalian Cell System Invertebrate System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abraham N, Stojdl DF, Duncan PI, Methot N, Ishii T, Dube M, Vanderhyden BC, Atkins HL, Gray DA, McBurney MW, Koromilas AE, Brown EG, Sonenberg N, Bell JC (1999) Characterization of transgenic mice with targeted disruption of the catalytic domain of the double-stranded RNA-dependent protein kinase, PKR. J Biol Chem 274:5953–5962.PubMedCrossRefGoogle Scholar
  2. Ashrafi K, Chang FY, Watts JL, Fraser AG, Kamath RS, Ahringer J, Ruvkun G (2003) Genome-wide RNAi analysis of Caenorhabditis elegans fat regulatory genes. Nature 421:268–272.PubMedCrossRefGoogle Scholar
  3. Aza-Blanc P, Cooper CL, Wagner K, Batalov S, Deveraux QL, Cooke MP (2003) Identification of modulators of TRAIL-induced apoptosis via RNAi-based phenotypic screening. Mol Cell 12:627–637.PubMedCrossRefGoogle Scholar
  4. Baeg GH, Zhou R, Perrimon N (2005) Genome-wide RNAi analysis of JAK/STAT signaling components in Drosophila. Genes Dev 19:1861–1870.PubMedCrossRefGoogle Scholar
  5. Baglioni C, Nilsen TW (1983) Mechanisms of antiviral action of interferon. Interferon 5:23–42.PubMedGoogle Scholar
  6. Bard F, Casano L, Mallabiabarrena A, Wallace E, Saito K, Kitayama H, Guizzunti G, Hu Y, Wendler F, Dasgupta R, Perrimon N, Malhotra V (2006) Functional genomics reveals genes involved in protein secretion and Golgi organization. Nature 439:604–607.PubMedCrossRefGoogle Scholar
  7. Barton GM, Medzhitov R (2002) Retroviral delivery of small interfering RNA into primary cells. Proc Natl Acad Sci U S A 99:14943–14945.PubMedCrossRefGoogle Scholar
  8. Bartz SR, Zhang Z, Burchard J, Imakura M, Martin M, Palmieri A, Needham R, Guo J, Gordon M, Chung N, Warrener P, Jackson AL, Carleton M, Oatley M, Locco L, Santini F, Smith T, Kunapuli P, Ferrer M, Strulovici B, Friend SH, Linsley PS (2006) Small interfering RNA screens reveal enhanced cisplatin cytotoxicity in tumor cells having both BRCA network and TP53 disruptions. Mol Cell Biol 26:9377–9386.PubMedCrossRefGoogle Scholar
  9. Berns K, Hijmans EM, Mullenders J, Brummelkamp TR, Velds A, Heimerikx M, Kerkhoven RM, Madiredjo M, Nijkamp W, Weigelt B, Agami R, Ge W, Cavet G, Linsley PS, Beijersbergen RL, Bernards R (2004) A large-scale RNAi screen in human cells identifies new components of the p53 pathway. Nature 428:431–437.PubMedCrossRefGoogle Scholar
  10. Bernstein E, Caudy AA, Hammond SM, Hannon GJ (2001a) Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409:363–366.PubMedCrossRefGoogle Scholar
  11. Bernstein E, Denli AM, Hannon GJ (2001b) The rest is silence. Rna 7:1509–1521.PubMedGoogle Scholar
  12. Billy E, Brondani V, Zhang H, Muller U, Filipowicz W (2001) Specific interference with gene expression induced by long, double-stranded RNA in mouse embryonal teratocarcinoma cell lines. Proc Natl Acad Sci U S A 98:14428–14433.PubMedCrossRefGoogle Scholar
  13. Birmingham A, Anderson EM, Reynolds A, Ilsley-Tyree D, Leake D, Fedorov Y, Baskerville S, Maksimova E, Robinson K, Karpilow J, Marshall WS, Khvorova A (2006) 3s UTR seed matches, but not overall identity, are associated with RNAi off-targets. Nat Methods 3:199–204.PubMedCrossRefGoogle Scholar
  14. Birrell GW, Giaever G, Chu AM, Davis RW, Brown JM (2001) A genome-wide screen in Saccharomyces cerevisiae for genes affecting UV radiation sensitivity. Proc Natl Acad Sci U S A 98:12608–12613.PubMedCrossRefGoogle Scholar
  15. Bitko V, Musiyenko A, Shulyayeva O, Barik S (2005) Inhibition of respiratory viruses by nasally administered siRNA. Nat Med 11:50–55.PubMedCrossRefGoogle Scholar
  16. Bohnsack MT, Czaplinski K, Gorlich D (2004) Exportin 5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs. RNA 10:185–191.PubMedCrossRefGoogle Scholar
  17. Boutros M, Kiger AA, Armknecht S, Kerr K, Hild M, Koch B, Haas SA, Paro R, et al (2004) Genome-wide RNAi analysis of growth and viability in Drosophila cells. Nat Med 303:832–835.Google Scholar
  18. Brummelkamp TR, Bernards R, Agami R (2002a) A system for stable expression of short interfering RNAs in mammalian cells. Science 296:550–553.PubMedCrossRefGoogle Scholar
  19. Brummelkamp TR, Bernards R, Agami R (2002b) Stable suppression of tumorigenicity by virus-mediated RNA interference. Cancer Cell 2:243–247.PubMedCrossRefGoogle Scholar
  20. Caplen NJ, Parrish S, Imani F, Fire A, Morgan RA (2001) Specific inhibition of gene expression by small double-stranded RNAs in invertebrate and vertebrate systems. Proc Natl Acad Sci U S A 98:9742–9747.PubMedCrossRefGoogle Scholar
  21. Carmell MA, Hannon GJ (2004) RNase III enzymes and the initiation of gene silencing. Nat Struct Mol Biol 11:214–218.PubMedCrossRefGoogle Scholar
  22. Carmell MA, Xuan Z, Zhang MQ, Hannon GJ (2002) The Argonaute family: tentacles that reach into RNAi, developmental control, stem cell maintenance, and tumorigenesis. Genes Dev 16:2733–2742.PubMedCrossRefGoogle Scholar
  23. Carmell MA, Zhang L, Conklin DS, Hannon GJ, Rosenquist TA (2003) Germline transmission of RNAi in mice. Nat Struct Biol 10:91–92.PubMedCrossRefGoogle Scholar
  24. Check E (2005) A crucial test. Nat Med 11:243–244.PubMedCrossRefGoogle Scholar
  25. DasGupta R, Kaykas A, Moon RT, Perrimon N (2005) Functional genomic analysis of the Wnt-wingless signaling pathway. Science 308:826–833.PubMedCrossRefGoogle Scholar
  26. Dector MA, Romero P, Lopez S, Arias CF (2002) Rotavirus gene silencing by small interfering RNAs. EMBO J 3:1175–1180.CrossRefGoogle Scholar
  27. Denli AM, Tops BB, Plasterk RH, Ketting RF, Hannon GJ (2004) Processing of primary microRNAs by the Microprocessor complex. Nature 432:231–235.PubMedCrossRefGoogle Scholar
  28. Devroe E, Silver PA (2002) Retrovirus-delivered siRNA. BMC Biotechnol 2:15.PubMedCrossRefGoogle Scholar
  29. Dickins RA, Hemann MT, Zilfou JT, Simpson DR, Ibarra I, Hannon GJ, Lowe SW (2005) Probing tumor phenotypes using stable and regulated synthetic microRNA precursors. Nat Genet 37:1289–1295.PubMedGoogle Scholar
  30. Doench JG, Petersen CP, Sharp PA (2003) siRNAs can function as miRNAs. Genes Dev 17:438–442.PubMedCrossRefGoogle Scholar
  31. Doms RW, Trono D (2000) The plasma membrane as a combat zone in the HIV battlefield. Genes Dev 14:2677–2688.PubMedCrossRefGoogle Scholar
  32. Dykxhoorn DM, Lieberman J (2006) Silencing viral infection. PLoS Med 3:e242.PubMedCrossRefGoogle Scholar
  33. Edgar R, Wood W (1966) Morphogenesis of bacteriophage T4 in extracts of mutant-infected cells. Proc Natl Acad Sci U S A 55:498–505.PubMedCrossRefGoogle Scholar
  34. Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T (2001) Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411:494–498.PubMedCrossRefGoogle Scholar
  35. Filippov V, Solovyev V, Filippova M, Gill SS (2000) A novel type of RNase III family proteins in eukaryotes. Gene 245:213–221.PubMedCrossRefGoogle Scholar
  36. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811.PubMedCrossRefGoogle Scholar
  37. Fortin KR, Nicholson RH, Nicholson AW (2002) Mouse ribonuclease III. cDNA structure, expression analysis, and chromosomal location. BMC Genomics 3:26.PubMedCrossRefGoogle Scholar
  38. Fraser AG, Kamath RS, Zipperlen P, Martinez-Campos M, Sohrmann M, Ahringer J (2000) Functional genomic analysis of C. elegans chromosome I by systematic RNA interference. Nature 408:325–330.PubMedCrossRefGoogle Scholar
  39. Friedman A, Perrimon N (2006) A functional RNAi screen for regulators of receptor tyrosine kinase and ERK signalling. Nature 444:230–234.PubMedCrossRefGoogle Scholar
  40. Ge Q, McManus MT, Nguyen T, Shen CH, Sharp PA, Eisen HN, Chen J (2003) RNA interference of influenza virus production by directly targeting mRNA for degradation and indirectly inhibiting all viral RNA transcription. Proc Natl Acad Sci U S A 100:2718–2723.PubMedCrossRefGoogle Scholar
  41. Giaever G, Chu AM, Ni L, Connelly C, Riles L, Veronneau S, Dow S, Lucau-Danila A, Anderson K, Andre B, Arkin AP, Astromoff A, El-Bakkoury M, Bangham R, Benito R, Brachat S, Campanaro S, Curtiss M, Davis K, Deutschbauer A, Entian KD, Flaherty P, Foury F, Garfinkel DJ, Gerstein M, Gotte D, Guldener U, Hegemann JH, Hempel S, Herman Z, Jaramillo DF, Kelly DE, Kelly SL, Kotter P, LaBonte D, Lamb DC, Lan N, Liang H, Liao H, Liu L, Luo C, Lussier M, Mao R, Menard P, Ooi SL, Revuelta JL, Roberts CJ, Rose M, Ross-Macdonald P, Scherens B, Schimmack G, Shafer B, Shoemaker DD, Sookhai-Mahadeo S, Storms RK, Strathern JN, Valle G, Voet M, Volckaert G, Wang CY, Ward TR, Wilhelmy J, Winzeler EA, Yang Y, Yen G, Youngman E, Yu K, Bussey H, Boeke JD, Snyder M, Philippsen P, Davis RW, Johnston M (2002) Functional profiling of the Saccharomyces cerevisiae genome. Nature 418:387–391.PubMedCrossRefGoogle Scholar
  42. Gil J, Esteban M (2000) Induction of apoptosis by the dsRNA-dependent protein kinase (PKR): mechanism of action. Apoptosis 5:107–114.PubMedCrossRefGoogle Scholar
  43. Gönczy P, Echeverri C, Oegema K, Coulson A, Jones SJ, Copley RR, Duperon J, Oegema J, Brehm M, Cassin E, Hannak E, Kirkham M, Pichler S, Flohrs K, Goessen A, Leidel S, Alleaume AM, Martin C, Ozlu N, Bork P, Hyman AA (2000) Functional genomic analysis of cell division in C. elegans using RNAi of genes on chromosome III. Nature 408:331–336.PubMedCrossRefGoogle Scholar
  44. Gregory RI, Yan KP, Amuthan G, Chendrimada T, Doratotaj B, Cooch N, Shiekhattar R (2004) The Microprocessor complex mediates the genesis of microRNAs. Nature 432:235–240.PubMedCrossRefGoogle Scholar
  45. Grishok A, Pasquinelli AE, Conte D, Li N, Parrish S, Ha I, Baillie DL, Fire A, Ruvkun G, Mello CC (2001) Genes and mechanisms related to RNA interference regulate expression of the small temporal RNAs that control C. elegans developmental timing. Cell 106:23–34.PubMedCrossRefGoogle Scholar
  46. Ha I, Wightman B, Ruvkun G (1996) A bulged lin-4/lin-14 RNA duplex is sufficient for Caenorhabditis elegans lin-14 temporal gradient formation. Genes Dev 10:3041–3050.PubMedCrossRefGoogle Scholar
  47. Haley B, Zamore PD (2004) Kinetic analysis of the RNAi enzyme complex. Nat Struct Mol Biol 11:599–606.PubMedCrossRefGoogle Scholar
  48. Hall IM, Shankaranarayana GD, Noma K, Ayoub N, Cohen A, Grewal SI (2002) Establishment and maintenance of a heterochromatin domain. Science 297:2232–2237.PubMedCrossRefGoogle Scholar
  49. Hammond SM, Bernstein E, Beach D, Hannon GJ (2000) An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature 404:293–296.PubMedCrossRefGoogle Scholar
  50. Han J, Lee Y, Yeom KH, Kim YK, Jin H, Kim VN (2004) The Drosha-DGCR8 complex in primary microRNA processing. Genes Dev 18:3016–3027.PubMedCrossRefGoogle Scholar
  51. Han J, Lee Y, Yeom KH, Nam JW, Heo I, Rhee JK, Sohn SY, Cho Y, Zhang BT, Kim VN (2006) Molecular basis for the recognition of primary microRNAs by the Drosha-DGCR8 complex. Cell 125:887–901.PubMedCrossRefGoogle Scholar
  52. Hannon GJ (2002) RNA interference. Nature 418:244–251.PubMedCrossRefGoogle Scholar
  53. Hartwell LH, Weinert TA (1989) Checkpoints: controls that ensure the order of cell cycle events. Science 246:629–634.PubMedCrossRefGoogle Scholar
  54. Hartwell LH, Culotti J, Pringle JR, Reid BJ (1974) Genetic control of the cell division cycle in yeast. Science 183:46–51.PubMedCrossRefGoogle Scholar
  55. Hemann MT, Fridman JS, Zilfou JT, Hernando E, Paddison PJ, Cordon-Cardo C, Hannon GJ, Lowe SW (2003) An epi-allelic series of p53 hypomorphs created by stable RNAi produces distinct tumor phenotypes in vivo. Nat Genet 33:396–400.PubMedCrossRefGoogle Scholar
  56. Hutvagner G, McLachlan J, Pasquinelli AE, Balint E, Tuschl T, Zamore PD (2001) A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science 293:834–838.PubMedCrossRefGoogle Scholar
  57. Irvine DV, Zaratiegui M, Tolia NH, Goto DB, Chitwood DH, Vaughn MW, Joshua-Tor L, Martienssen RA (2006) Argonaute slicing is required for heterochromatic silencing and spreading. Proc Natl Acad Sci U S A 313:1134–1137.Google Scholar
  58. Jackson AL, Bartz SR, Schelter J, Kobayashi SV, Burchard J, Mao M, Li B, Cavet G, Linsley PS (2003) Expression profiling reveals off-target gene regulation by RNAi. Nat Biotechnol 21:635–637.PubMedCrossRefGoogle Scholar
  59. Jacque JM, Triques K, Stevenson M (2002) Modulation of HIV-1 replication by RNA interference. Nature 418:435–438.PubMedCrossRefGoogle Scholar
  60. Jia Q, Sun R (2003) Inhibition of gammaherpesvirus replication by RNA interference. J Virol 77:3301–3306.PubMedCrossRefGoogle Scholar
  61. Kapadia SB, Brideau-Andersen A, Chisari FV (2003) Interference of hepatitis C virus RNA replication by short interfering RNAs. Proc Natl Acad Sci U S A 100:2014–2018.PubMedCrossRefGoogle Scholar
  62. Ketting RF, Fischer SE, Bernstein E, Sijen T, Hannon GJ, Plasterk RH (2001) Dicer functions in RNA interference and in synthesis of small RNA involved in developmental timing in C. elegans. Genes Dev 15:2654–2659.PubMedCrossRefGoogle Scholar
  63. Kittler R, Putz G, Pelletier L, Poser I, Heninger AK, Drechsel D, Fischer S, Konstantinova I, Habermann B, Grabner H, Yaspo ML, Himmelbauer H, Korn B, Neugebauer K, Pisabarro MT, Buchholz F (2004) An endoribonuclease-prepared siRNA screen in human cells identifies genes essential for cell division. Nature 432:1036–1040.PubMedCrossRefGoogle Scholar
  64. Knight SW, Bass BL (2001) A role for the RNase III enzyme DCR-1 in RNA interference and germ line development in Caenorhabditis elegans. Science 293:2269–2271.PubMedCrossRefGoogle Scholar
  65. Kurihara Y, Watanabe Y (2004) Arabidopsis micro-RNA biogenesis through Dicer-like 1 protein functions. Proc Natl Acad Sci U S A 101:12753–12758.PubMedCrossRefGoogle Scholar
  66. Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T (2001) Identification of novel genes coding for small expressed RNAs. Science 294:853–858.PubMedCrossRefGoogle Scholar
  67. Lamontagne B, Ghazal G, Lebars I, Yoshizawa S, Fourmy D, Elela SA (2003) Sequence dependence of substrate recognition and cleavage by yeast RNase III. J Mol Biol 327:985–1000.PubMedCrossRefGoogle Scholar
  68. Landthaler M, Yalcin A, Tuschl T (2004) The human DiGeorge syndrome critical region gene 8 and its D. melanogaster homolog are required for miRNA biogenesis. Curr Biol 14:2162–2167.PubMedCrossRefGoogle Scholar
  69. Lau NC, Lim LP, Weinstein EG, Bartel DP (2001) An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science 294:858–862.PubMedCrossRefGoogle Scholar
  70. Lee NS, Dohjima T, Bauer G, Li H, Li MJ, Ehsani A, Salvaterra P, Rossi J (2002) Expression of small interfering RNAs targeted against HIV-1 rev transcripts in human cells. Nat Biotechnol 20:500–505.PubMedGoogle Scholar
  71. Lee RC, Ambros V (2001) An extensive class of small RNAs in Caenorhabditis elegans. Science 294:862–864.PubMedCrossRefGoogle Scholar
  72. Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75:843–854.PubMedCrossRefGoogle Scholar
  73. Lee SS, Lee RY, Fraser AG, Kamath RS, Ahringer J, Ruvkun G (2003a) A systematic RNAi screen identifies a critical role for mitochondria in C. elegans longevity. Nat Genet 33:40–48.PubMedCrossRefGoogle Scholar
  74. Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J, Lee J, Provost P, Radmark O, Kim S, Kim VN (2003b) The nuclear RNase III Drosha initiates microRNA processing. Nature 425:41.Google Scholar
  75. Lum L, Yao S, Mozer B, Rovescalli A, Von Kessler D, Nirenberg M, Beachy PA (2003) Identification of Hedgehog pathway components by RNAi in Drosophila cultured cells. Science 299:2039–2045.PubMedCrossRefGoogle Scholar
  76. Lund E, Guttinger S, Calado A, Dahlberg JE, Kutay U (2004) Nuclear export of microRNA precursors. Science 303:95–98.PubMedCrossRefGoogle Scholar
  77. MacKeigan JP, Murphy LO, Blenis J (2005) Sensitized RNAi screen of human kinases and phosphatases identifies new regulators of apoptosis and chemoresistance. Nat Cell Biol 7:591–600.PubMedCrossRefGoogle Scholar
  78. MacRae IJ, Zhou K, Li F, Repic A, Brooks AN, Cande WZ, Adams PD, Doudna JA (2006) Structural basis for double-stranded RNA processing by Dicer. Science 311:195–198.PubMedCrossRefGoogle Scholar
  79. McCaffrey AP, Meuse L, Pham TT, Conklin DS, Hannon GJ, Kay MA (2002) RNA interference in adult mice. Nature 418:38–39.PubMedCrossRefGoogle Scholar
  80. McFarland TJ, Zhang Y, Appukuttan B, Stout JT (2004) Gene therapy for proliferative ocular diseases. Expert Opin Biol Ther 4:1053–1058.PubMedCrossRefGoogle Scholar
  81. McManus MT, Haines BB, Dillon CP, Whitehurst CE, van Parijs L, Chen J, Sharp PA (2002) Small interfering RNA-mediated gene silencing in T lymphocytes. J Immunol 169:5754–5760.PubMedGoogle Scholar
  82. Miyagishi M, Taira K (2002) U6 promoter driven siRNAs with four uridine 3M overhangs efficiently suppress targeted gene expression in mammalian cells. Nat Biotechnol 20:497–500.PubMedCrossRefGoogle Scholar
  83. Mourelatos Z, Dostie J, Paushkin S, Sharma A, Charroux B, Abel L, Rappsilber J, Mann M, Dreyfuss G (2002) miRNPs: a novel class of ribonucleoproteins containing numerous microRNAs. Genes Dev 16:720–728.PubMedCrossRefGoogle Scholar
  84. Novina CD, Murray MF, Dykxhoorn DM, Beresford PJ, Riess J, Lee SK, Collman RG, Lieberman J, Shankar P, Sharp PA (2002) siRNA-directed inhibition of HIV-1 infection. Nat Med 8:681–686.PubMedGoogle Scholar
  85. Nybakken K, Vokes SA, Lin TY, McMahon AP, Perrimon N (2005) A genome-wide RNA interference screen in Drosophila melanogaster cells for new components of the Hh signaling pathway. Nat Genet 37:1323–1332.PubMedCrossRefGoogle Scholar
  86. Nykanen A, Haley B, Zamore PD (2001) ATP requirements and small interfering RNA structure in the RNA interference pathway. Cell 107:309–321.PubMedCrossRefGoogle Scholar
  87. Paddison PJ, Hannon GJ (2002) RNA interference: the new somatic cell genetics? Cancer Cell 2:17–23.PubMedCrossRefGoogle Scholar
  88. Paddison PJ, Caudy AA, Hannon GJ (2002a) Stable suppression of gene expression in mammalian cells by RNAi. Proc Natl Acad Sci U S A 99:1443–1448.PubMedCrossRefGoogle Scholar
  89. Paddison PJ, Caudy AA, Bernstein E, Hannon GJ, Conklin DS (2002b) Short hairpin RNAs (shRNAs) induce sequence-specific silencing in mammalian cells. Genes Dev 16:948–958.PubMedCrossRefGoogle Scholar
  90. Paddison PJ, Silva JM, Conklin DS, Schlabach M, Li M, Aruleba S, Balija V, O’Shaughnessy A, Gnoj L, Scobie K, Chang K, Westbrook T, Cleary M, Sachidanandam R, McCombie WR, Elledge SJ, Hannon GJ (2004) A resource for large-scale RNA-interference-based screens in mammals. Nature 428:427–431.PubMedCrossRefGoogle Scholar
  91. Pai SI, Lin YY, Macaes B, Meneshian A, Hung CF, Wu TC (2006) Prospects of RNA interference therapy for cancer. Gene Ther 13:464–477.PubMedCrossRefGoogle Scholar
  92. Pasquinelli AE, Reinhart BJ, Slack F, Martindale MQ, Kuroda MI, Maller B, Hayward DC, Ball EE, Degnan B, Muller P, Spring J, Srinivasan A, Fishman M, Finnerty J, Corbo J, Levine M, Leahy P, Davidson E, Ruvkun G (2000) Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature 2000 408:86–89.PubMedCrossRefGoogle Scholar
  93. Paul CP, Good PD, Winer I, Engelke DR (2002) Effective expression of small interfering RNA in human cells. Nat Biotechnol 20:505–508.PubMedCrossRefGoogle Scholar
  94. Pothof J, van Haaften G, Thijssen K, Kamath RS, Fraser AG, Ahringer J, Plasterk RH, Tijsterman M (2003) Identification of genes that protect the C. elegans genome against mutations by genome-wide RNAi. Genes Dev 17:443–448.PubMedCrossRefGoogle Scholar
  95. Qin XF, An DS, Chen IS, Baltimore D (2003) Inhibiting HIV-1 infection in human T cells by lentiviral-mediated delivery of small interfering RNA against CCR5. Proc Natl Acad Sci U S A 100:183–188.PubMedCrossRefGoogle Scholar
  96. Randall G, Grakoui A, Rice CM (2003) Clearance of replicating hepatitis C virus replicon RNAs in cell culture by small interfering RNAs. Proc Natl Acad Sci U S A 100:235–240.PubMedCrossRefGoogle Scholar
  97. Raoul C, Barker SD, Aebischer P (2006) Viral-based modeling and correction of neurodegenerative diseases by RNA interference. Gene Ther 13:487–495.PubMedCrossRefGoogle Scholar
  98. Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bettinger JC, Rougvie AE, Horvitz HR, Ruvkun G (2000) The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403:901–906.PubMedCrossRefGoogle Scholar
  99. Rossi JJ (2006) RNAi as a treatment for HIV-1 infection. Biotechniques 40:s25–s29.CrossRefGoogle Scholar
  100. Rubinson DA, Dillon CP, Kwiatkowski AV, Sievers C, Yang L, Kopinja J, Zhang M, McManus MT, Gertler FB, Scott ML, Van Parijs L (2003) A lentivirus-based system to functionally silence genes in primary mammalian cells, stem cells and transgenic mice by RNA interference. Nat Genet 33:401–406.PubMedCrossRefGoogle Scholar
  101. Schwarz DS, Hutvagner G, Haley B, Zamore PD (2002) Evidence that siRNAs function as guides, not primers, in the Drosophila and human RNAi pathways. Mol Cell 10:537–548.PubMedCrossRefGoogle Scholar
  102. Shin KJ, Wall EA, Zavzavadjian JR, Santat LA, Liu J, Hwang JI, Rebres R, Roach T, Seaman W, Simon MI, Fraser ID (2006) A single lentiviral vector platform for microRNA-based conditional RNA interference and coordinated transgene expression. Proc Natl Acad Sci U S A 103:13759–13764.PubMedCrossRefGoogle Scholar
  103. Sijen T, Fleenor J, Simmer F, Thijssen KL, Parrish S, Timmons L, Plasterk RH, Fire A (2001) On the role of RNA amplification in dsRNA-triggered gene silencing. Cell 107:465–476.PubMedCrossRefGoogle Scholar
  104. Silva JM, Li MZ, Chang K, Ge W, Golding MC, Rickles RJ, Siolas D, Hu G, Paddison PJ, Schlabach MR, Sheth N, Bradshaw J, Burchard J, Kulkarni A, Cavet G, Sachidanandam R, McCombie WR, Cleary MA, Elledge SJ, Hannon GJ (2005) Second-generation shRNA libraries covering the mouse and human genomes. Nat Genet 37:1281–1288.PubMedGoogle Scholar
  105. Siolas D, Lerner C, Burchard J, Ge W, Linsley PS, Paddison PJ, Hannon GJ, Cleary MA (2005) Synthetic shRNAs as potent RNAi triggers. Nat Biotechnol 23:227–231.PubMedCrossRefGoogle Scholar
  106. Slack FJ, Basson M, Liu Z, Ambros V, Horvitz HR, Ruvkun G (2000) The lin-41 RBCC gene acts in the C. elegans heterochronic pathway between the let-7 regulatory RNA and the LIN-29 transcription factor. Mol Cell 5:659–669.PubMedCrossRefGoogle Scholar
  107. Song E, Lee SK, Wang J, Ince N, Ouyang N, Min J, Chen J, Shankar P, Lieberman J (2003a) RNA interference targeting Fas protects mice from fulminant hepatitis. Nat Med 9:347–351.PubMedCrossRefGoogle Scholar
  108. Song JJ, Liu J, Tolia NH, Schneiderman J, Smith SK, Martienssen RA, Hannon GJ, Joshua-Tor L (2003b) The crystal structure of the Argonaute2 PAZ domain reveals an RNA binding motif in RNAi effector complexes. Nat Struct Biol 10:1026–1032.PubMedCrossRefGoogle Scholar
  109. Song JJ, Smith SK, Hannon GJ, Joshua-Tor L (2004) Crystal structure of Argonaute and its implications for RISC slicer activity. Science 305:1434–1437.PubMedCrossRefGoogle Scholar
  110. Stegmeier F, Hu G, Rickles RJ, Hannon GJ, Elledge SJ (2005) A lentiviral microRNA-based system for single-copy polymerase II-regulated RNA interference in mammalian cells. Proc Natl Acad Sci U S A 102:13212–13217.PubMedCrossRefGoogle Scholar
  111. Stein P, Svoboda P, Anger M, Schultz RM (2003) RNAi: mammalian oocytes do it without RNA-dependent RNA polymerase. RNA 9:187–192.PubMedCrossRefGoogle Scholar
  112. Sui G, Soohoo C, Affar el B, Gay F, Shi Y, Forrester WC, Shi Y (2002) A DNA vector-based RNAi technology to suppress gene expression in mammalian cells. Proc Natl Acad Sci U S A 99:5515–5520.PubMedCrossRefGoogle Scholar
  113. Svoboda P, Stein P, Hayashi H, Schultz RM (2000) Selective reduction of dormant maternal mRNAs in mouse oocytes by RNA interference. Development 127:4147–4156.PubMedGoogle Scholar
  114. Tiscornia G, Singer O, Ikawa M, Verma IM (2003) A general method for gene knockdown in mice by using lentiviral vectors expressing small interfering RNA. Proc Natl Acad Sci U S A 100:1844–1848.PubMedCrossRefGoogle Scholar
  115. Tolia NH, Joshua-Tor L (2007) Slicer and the argonautes. Nat Chem Biol 3:36–43.PubMedCrossRefGoogle Scholar
  116. Tuschl T, Zamore PD, Lehmann R, Bartel DP, Sharp PA (1999) Targeted mRNA degradation by double-stranded RNA in vitro. Genes Dev 13:3191–3197.PubMedCrossRefGoogle Scholar
  117. Valencia-Sanchez MA, Liu J, Hannon GJ, Parker R (2006) Control of translation and mRNA degradation by miRNAs and siRNAs. Genes Dev 20:515–524.PubMedCrossRefGoogle Scholar
  118. Volpe TA, Kidner C, Hall IM, Teng G, Grewal SI, Martienssen RA (2002) Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi. Science 297:1833–1837.PubMedCrossRefGoogle Scholar
  119. Westbrook TF, Martin ES, Schlabach MR, Leng Y, Liang AC, Feng B, Zhao JJ, Roberts TM, Mandel G, Hannon GJ, Depinho RA, Chin L, Elledge SJ (2005) A genetic screen for candidate tumor suppressors identifies REST. Cell 121:837–848.PubMedCrossRefGoogle Scholar
  120. Wianny F, Zernicka-Goetz M (2000) Specific interference with gene function by double-stranded RNA in early mouse development. Nat Cell Biol 2:70–75.PubMedCrossRefGoogle Scholar
  121. Wightman B, Ha I, Ruvkun G (1993) Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 75:855–862.PubMedCrossRefGoogle Scholar
  122. Williams BR (1997) Role of the double-stranded RNA-activated protein kinase (PKR) in cell regulation. Biochem Soc Trans 25:509–513.PubMedGoogle Scholar
  123. Winzeler EA, Shoemaker DD, Astromoff A, Liang H, Anderson K, Andre B, Bangham R, Benito R, Boeke JD, Bussey H, Chu AM, Connelly C, Davis K, Dietrich F, Dow SW, El Bakkoury M, Foury F, Friend SH, Gentalen E, Giaever G, Hegemann JH, Jones T, Laub M, Liao H, Liebundguth N, Lockhart DJ, Lucau-Danila A, Lussier M, M’Rabet N, Menard P, Mittmann M, Pai C, Rebischung C, Revuelta JL, Riles L, Roberts CJ, Ross-MacDonald P, Scherens B, Snyder M, Sookhai-Mahadeo S, Storms RK, Veronneau S, Voet M, Volckaert G, Ward TR, Wysocki R, Yen GS, Yu K, Zimmermann K, Philippsen P, Johnston M, Davis RW (1999) Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science 285:901.PubMedCrossRefGoogle Scholar
  124. Wu H, Xu H, Miraglia LJ, Crooke ST (2000) Human RNase III is a 160-kDa protein involved in preribosomal RNA processing. J Biol Chem 275:36957–36965.PubMedCrossRefGoogle Scholar
  125. Yang S, Tutton S, Pierce E, Yoon K (2001) Specific double-stranded RNA interference in undifferentiated mouse embryonic stem cells. Mol Cell Biol 21:7807–7816.PubMedCrossRefGoogle Scholar
  126. Yi R, Qin Y, Macara IG, Cullen BR (2003) Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev 17:3011–3016.PubMedCrossRefGoogle Scholar
  127. Yu JY, DeRuiter SL, Turner DL (2002) RNA interference by expression of short-interfering RNAs and hairpin RNAs in mammalian cells. Proc Natl Acad Sci U S A 99:6047–6052.PubMedCrossRefGoogle Scholar
  128. Zamore PD, Haley B (2005) Ribo-gnome: the big world of small RNAs. Science 309:1519–1524.PubMedCrossRefGoogle Scholar
  129. Zamore PD, Tuschl T, Sharp PA, Bartel DP (2000) RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell 101:25–33.PubMedCrossRefGoogle Scholar
  130. Zeng Y, Wagner EJ, Cullen BR (2002) Both natural and designed micro RNAs can inhibit the expression of cognate mRNAs when expressed in human cells. Mol Cell 9:1327–1333.PubMedCrossRefGoogle Scholar
  131. Zilberman D, Cao X, Jacobsen SE (2003) Argonaute4 control of locus-specific siRNA accumulation and DNA and histone methylation. Science 299:716–719PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Patrick J. Paddison
    • 1
  1. 1.Cold Spring Harbor Fellows ProgramCold Spring Harbor LaboratoryCold Spring HarborUSA

Personalised recommendations