Skip to main content

Reconstruction of Mammalian Cell Cycle Regulatory Network from Microarray Data Using Stochastic Logical Networks

  • Conference paper
Computational Methods in Systems Biology (CMSB 2007)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 4695))

Included in the following conference series:

  • 774 Accesses

Abstract

We present a novel algorithm for reconstructing the topology of regulatory networks based on the Stochastic Logical Network model. Our method, by avoiding the computation of the Markov model parameters is able to reconstruct the topology of the SLN model in polynomial time instead of exponential as in previous study [29]. To test the performance of the method, we apply it to different datasets (both synthetic and experimental) covering the expression of several cell cycle regulators which have been thoroughly studied [18,11]. We compare the results of our method with the popular Dynamic Bayesian Network approach in order to quantify the ability to reconstruct true dependencies. Although both methods able to recover only a part of the true dependencies from realistic data, our method gives consistently better results than Dynamic Bayesian Networks in terms of the number of correctly reconstructed edges, sensitivity and statistical significance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akutsu, T., Miyano, S., Kuhara, S.: Identification of genetic networks from a small number of gene expression patterns under the Boolean network model. In: Pacific Symposia on Biocomputing, pp. 17–28 (1999)

    Google Scholar 

  2. Baum, L.E., Peterie, T., Souled, G., Weiss, N.: A maximization technique occurring in the statistical analysis of probabilistic functions of Markov chains. Ann. Math. Statist. 41(1), 164–171 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  3. Chaouiya, C., de Jong, H., Thieffry, D.: Dynamical modeling of biological regulatory networks. Biosystems 84(2), 77–80 (2006)

    Article  Google Scholar 

  4. Chen, K.-C., Wang, T.-Y., Tseng, H.-H., Huang, C.-Y., Kao, C.-Y.: A stochastic differential equation model for quantifying transcriptional regulatory network in Saccharomyces cerevisiae. Bioinformatics Evaluation Studies 21(12), 2883–2890 (2005)

    Google Scholar 

  5. Cho, R.J., Huang, M., Campbell, M.J., Dong, H., Steinmetz, L., Sapinoso, L., Hampton, G., Elledge, S.J., Davis, R.W., Lockhart, D.J.: Transcriptional regulation and function during the human cell cycle. Nat. Genet. 27(1), 48–54 (2001)

    Article  Google Scholar 

  6. D’Agostino, R.B., Chase, W., Belanger, A.: The appropriateness of some common proceduresfor testing the equality of two independent binomial populations. The American Statistician 42(3), 198–202 (1988)

    Article  Google Scholar 

  7. Eric, H.D., Rast, Oliveri, Ransick, Calestani, Yuh, Minokawa, Amore, Hinman, Arenas-Mena, Otim, Brown, Livi, Lee, Revilla, Rust, Pan, Schilstra, Clarke, Arnone, Rowen, Cameron, McClay, Hood, Bolouri, Davidson E.H.: A genomic regulatory network for development. Science (2002)

    Google Scholar 

  8. Dojer, N.: Learning Bayesian networks does not have to be NP-hard. In: Královič, R., Urzyczyn, P. (eds.) MFCS 2006. LNCS, vol. 4162, pp. 305–314. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  9. Dojer, N., Gambin, A., Wilczyński, B., Tiuryn, J.: Applying dynamic Bayesian networks to perturbed gene expression data. BMC Bioinformatics 7, 249 (2006)

    Article  Google Scholar 

  10. Ermentrout, B.: Simulating, Analyzing, and Animating Dynamical Systems: A Guide to Xppaut for Researchers and Students. In: Society for Industrial and Applied Mathematics, 1st edn. (2002)

    Google Scholar 

  11. Faure, A., Naldi, A., Chaouiya, C., Thieffry, D.: Dynamical analysis of a generic Boolean model for the control of the mammalian cell cycle. Bioinformatics 22(14), 124–131 (2006)

    Article  Google Scholar 

  12. Friedman, N., Linial, M., Nachman, I., Pe’er, D.: Using bayesian networks to analyze expression data. Journal of Computational Biology 7, 601–620 (2000)

    Article  Google Scholar 

  13. Husmeier, D.: Sensitivity and specificity of inferring genetic regulatory interactions from microarray experiments with dynamic Bayesian networks. Bioinformatics 19(17), 2271–2282 (2003)

    Article  Google Scholar 

  14. Imoto, S., Goto, T., Miyano, S.: Estimation of genetic networks and functional structures between genes by using Bayesian networks and nonparametric regression. In: Pacific Symposia on Biocomputing, pp. 175–186 (2002)

    Google Scholar 

  15. Liang, S., Fuhrman, S., Somogyi, R.: Reveal, a general reverse engineering algorithm for inference of genetic network architectures. In: Pacific Symposia on Biocomputing, pp. 18–29 (1998)

    Google Scholar 

  16. Mendoza, L., Thieffry, D., Alvarez-Buylla, E.R.: Genetic control of flower morphogenesis in arabidopsis thaliana: a logical analyssis. Journal of Theoretical Biology (1999)

    Google Scholar 

  17. Murphy, K., Mian, S.: Modelling gene expression data using dynamic Bayesian networks. University of California, Berkeley (1999)

    Google Scholar 

  18. Novak, B., Tyson, J.: A model for restriction point control of the mammalian cell cycle. J. Theor. Biol. 230(4), 563–579 (2004)

    Article  MathSciNet  Google Scholar 

  19. Ott, S., Imoto, S., Miyano, S.: Finding optimal models for gene networks. In: Proc. of Pacific Symposia in Biocomputing (2004)

    Google Scholar 

  20. Parkinson, H., Sarkans, U., Shojatalab, M., Abeygunawardena, N., Contrino, S., Coulson, R., Farne, A., Lara, G.G., Holloway, E., Kapushesky, M., Lilja, P., Mukherjee, G., Oezcimen, A., Rayner, T., Rocca-Serra, P., Sharma, A., Sansone, S., Brazma, A.: ArrayExpress–a public repository for microarray gene expression data at the EBI. Nucleic Acids Res. 33, 553–555 (2005)

    Article  Google Scholar 

  21. Pearl, J.: Probabilistic Reasoning in Intelligent Systems. Morgan-Kauffman, San Francisco, CA (1988)

    Google Scholar 

  22. Sanchez, L., Thieffry, D.: Segmenting the fly embryo: a logical analysis of the pair-rule cross-regulatory module. J. Theor. Biol. 224(4), 517–537 (2003)

    Article  Google Scholar 

  23. Shedden, K., Cooper, S.: Analysis of cell-cycle-specific gene expression in human cells as determined by microarrays and double-thymidine block synchronization. Proc. Natl. Acad. Sci. USA 99(7), 4379–4384 (2002)

    Article  Google Scholar 

  24. Shi, Y., Mitchell, T., Bar-Joseph, Z.: Inferring Pairwise Regulatory Relationships from Multiple Time Series Datasets. Bioinformatics, JOURNAL ARTICLE (January 2007)

    Google Scholar 

  25. Shmulevich, I., Dougherty, E., Kim, S., Zhang, W.: Probabilistic Boolean Networks: a rule-based uncertainty model for gene regulatory networks. Bioinformatics 18(2), 261–274 (2002)

    Article  Google Scholar 

  26. Thomas, R.: Boolean formalization of genetic control circuits. Journal of Theoretical Biology 42, 563 (1973)

    Article  Google Scholar 

  27. Thomas, R., D’Ari, R.: Biological Feedback. CRC Press, Boca Raton, USA (1990)

    MATH  Google Scholar 

  28. Whitfield, M.L., Sherlock, G., Saldanha, A.J., Murray, J.I., Ball, C.A., Alexander, K.E., Matese, J.C., Perou, C.M., Hurt, M.M., Brown, P.O., Botstein, D.: Identification of genes periodically expressed in the human cell cycle and their expression in tumors. Mol. Biol. Cell. 13(6), 1977–2000 (2002)

    Article  Google Scholar 

  29. Wilczyński, B., Tiuryn, J.: Regulatory network reconstruction using Stochastic Logical Networks. In: Priami, C. (ed.) CMSB 2006. LNCS (LNBI), vol. 4210, pp. 142–154. Springer, Heidelberg (2006), http://dx.doi.org/10.1007/11885191_10

    Chapter  Google Scholar 

  30. Novak and tyson cell cycle model webpage: http://mpf.biol.vt.edu/research/generic_model

  31. Sln webserver: http://bioputer.mimuw.edu.pl/BIAS/SLN/

  32. Mammalian cell cycle reconstruction – supplementary webpage: http://bioputer.mimuw.edu.pl/papers/bw/cmsb07/

  33. Zhao, W., Serpedin, E., Dougherty, E.: Inferring gene regulatory networks from time series data using the minimum description length principle. Bioinformatics 22(17), 2129–2135 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Muffy Calder Stephen Gilmore

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wilczyński, B., Tiuryn, J. (2007). Reconstruction of Mammalian Cell Cycle Regulatory Network from Microarray Data Using Stochastic Logical Networks. In: Calder, M., Gilmore, S. (eds) Computational Methods in Systems Biology. CMSB 2007. Lecture Notes in Computer Science(), vol 4695. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75140-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-75140-3_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-75139-7

  • Online ISBN: 978-3-540-75140-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics