Skip to main content

Computational Simulation of Optical Tracking of Cell Populations Using Quantum Dot Fluorophores

  • Conference paper
Computational Methods in Systems Biology (CMSB 2007)

Abstract

Quantum dot fluorophores provide a photo and bio-stable optical marker signal well suited to the tracking of lineage within large cell populations over multiple generations. We have used a Monte Carlo algorithm to model the process of dot partitioning and dilution by cell mitosis. A Genetic Algorithm was used to compare simulated and experiment quantum dot distributions, which shows that the dot fluorescence is divided with a stochastic variation about an asymmetric mean split ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dumitriu, I.E., Mohr, W., Kolowos, W., Kern, P., Kalden, J.R., Herrmann, M.: 5,6-Carboxyfluorescein Diacetate Succinimidyl Ester-Labeled apoptotic and necrotic as well as detergent-treated cells can be traced in composite cell samples. Analytical Biochemistry 299, 247–252 (2001)

    Article  Google Scholar 

  2. Hasbold, J., Hodgkin, P.D.: Flow cytometric cell division tracking using nuclei. Cytometry 40, 230–237 (2000)

    Article  Google Scholar 

  3. Bernard, S., Pujo-Menjouet, L., Mackey, M.C.: Analysis of cell kinetics using a cell division marker: Mathematical modeling of experimental data. Biophysical Journal 84, 3414–3424 (2003)

    Article  Google Scholar 

  4. Alivisatos, A.P.: Semiconductor clusters, nanocrystals, and quantum dots. Science 271, 933–937 (1996)

    Article  Google Scholar 

  5. Pinaud, F., Michalet, X., Bentolila, L.A., Tsay, J.M., Doose, S., Li, J.J., Iyer, G., Weiss, S.: Advances in fluorescence imaging with quantum dot bio-probes. Biomaterials 27, 1679–1687 (2006)

    Article  Google Scholar 

  6. Jyoti, K., Sanford, M.S.: Potentials and pitfalls of fluorescent quantum dots for biological imaging. Trends in Cell Biology 14, 497–504 (2005)

    Google Scholar 

  7. Hines, M.A., Guyot-Sionnest, P.: Synthesis and characterization of strongly luminescing ZnS-Capped CdSe nanocrystals. J. Phys. Chem. 100, 468–471 (1996)

    Article  Google Scholar 

  8. Dabbousi, B.O., Rodriguez-Viejo, J., Mikulec, F.V., Heine, J.R., Mattoussi, H., Ober, R., Jensen, K.F., Bawendi, M.G. (CdSe) ZnS core-shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites. J. Phys. Chem. 101, 9463–9475 (1997)

    Google Scholar 

  9. Marquez, N., Chappell, S.C., Sansom, O.J., Clarke, A.R., Court, J., Errington, R.J., Smith, P.J.: Single cell tracking reveals that Msh2 is a key component of an early-acting DNA damage-activated G2 checkpoint. Oncogen 22, 7642–7648 (2003)

    Article  Google Scholar 

  10. Errington, R.J., Ameer-Beg, S.M., Vojnovic, B., Patterson, L.H., Zloh, M., Smith, P.J.: Advanced microscopy solutions for monitoring the kinetics and dynamics of drug-DNA targeting in living cells. Adv. Drug. Deliv. Rev. 57, 153–167 (2005)

    Article  Google Scholar 

  11. Vose, M.D.: The Simple Genetic Algorithm: Foundations and Theory, 1st edn. MIT Press, London (1999)

    MATH  Google Scholar 

  12. Njoh, K.L., Summers, H.D., Errington, R.J., Brown, M.R., Chappell, S.C., Rees, P., Matthews, D.R., Wiltshire, M., Smith, P.J.: Analysis of cell cycle perturbation using Quantum Dot fluorescence, July 2007, To be submitted to Journal of Biophysics (in preparation)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Muffy Calder Stephen Gilmore

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Brown, M.R. et al. (2007). Computational Simulation of Optical Tracking of Cell Populations Using Quantum Dot Fluorophores. In: Calder, M., Gilmore, S. (eds) Computational Methods in Systems Biology. CMSB 2007. Lecture Notes in Computer Science(), vol 4695. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75140-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-75140-3_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-75139-7

  • Online ISBN: 978-3-540-75140-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics