Advertisement

Analysis of Web Link Analysis Algorithms: The Mathematics of Ranking

  • Luca Pretto
Chapter
  • 727 Downloads
Part of the The Information Retrieval Series book series (INRE, volume 22)

Abstract

Link analysis ranking algorithms were originally designed to enhance the performance of Web search engines by exploiting the topological structure of the digraph associated to the Web; now they are also used in many other fields, sometimes far removed from that of Web searching. In many of their applications, their ranking capabilities are of prime importance; from here the need arises to perform a mathematical analysis of these algorithms from the perspective of the rank they induce on the nodes of the digraphs on which they work. In this chapter the main theoretical results for the questions that arise when ranking is under investigation are presented. Furthermore, future directions for research in this field are conceived and discussed

Keywords

analysis of algorithms link analysis ranking mathematics of ranking 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agosti, M., Pretto, L.: A theoretical study of a generalized version of Kleinberg’s HITS algorithm. Information Retrieval 8, 219–243 (2005). Special topic issue: Advances in Mathematical/Formal Methods in Information Retrieval.CrossRefGoogle Scholar
  2. 2.
    Bacchin, M., Ferro, N., Melucci, M.: The effectiveness of a graph-based algorithm for stemming. In: E.P. Lim, C.S.G. Khoo, H. Chen, E.A. Fox, S.R. Urs, C. Thanos (eds.) Proceedings of the 5th International Conference on Asian Digital Libraries: People, Knowledge, and Technology, ICADL 2002, No. 2555 in Lecture Notes in Computer Science, pp. 117–128. Springer, Berlin Heidelberg New York (2002)CrossRefGoogle Scholar
  3. 3.
    Bacchin, M., Ferro, N., Melucci, M.: A probabilistic model for stemmer generation. Information Processing and Management 41(1), 121–137 (2005)CrossRefGoogle Scholar
  4. 4.
    Baeza-Yates, R., Davis, E.: Web page ranking using link attributes. In: Proceedings of the World Wide Web Conference, pp. 328–329 (2004)Google Scholar
  5. 5.
    Berry, M.W. (ed.): Survey of Text Mining: Clustering, Classification, and Retrieval. Springer, New York (2004)zbMATHGoogle Scholar
  6. 6.
    Bharat, K., Henzinger, M.R.: Improved algorithms for topic distillation in a hyperlinked environment. In: Proceedings of the 24th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 104–111. ACM (1998)Google Scholar
  7. 7.
    Bianchini, M., Gori, M., Scarselli, F.: Inside PageRank. ACM Transactions on Internet Technology 5(1), 92–128 (2005)CrossRefGoogle Scholar
  8. 8.
    Borodin, A., Roberts, G.O., Rosenthal, J.S., Tsaparas, P.: Link analysis ranking: Algorithms, theory, and experiments. ACM Transactions on Internet Technology 5(1), 231–297 (2005)CrossRefGoogle Scholar
  9. 9.
    Brin, S., Page, L.: The anatomy of a large scale hypertextual Web search engine. In: Proceedings of the World Wide Web Conference (1998). http://www7.scu.edu.au/programme/fullpapers/1921/com1921.htmGoogle Scholar
  10. 10.
    Chakrabarti, S., Dom, B.E., Gibson, D., Kumar, R., Raghavan, P., Rajagopalan, S., Tomkins, A.: Experiments in topic distillation. In: Proceedings of the ACM SIGIR Workshop on Hypertext Information Retrieval on the Web, pp. 117–128. ACM, New York (1998)Google Scholar
  11. 11.
    Cho, J., Garcia-Molina, H., Page, L.: Efficient crawling through URL ordering. Computer Networks 30(1–7), 161–172 (1998)Google Scholar
  12. 12.
    Diligenti, M., Gori, M., Maggini, M.: Web page scoring systems for horizontal and vertical search. In: Proceedings of the World Wide Web Conference, pp. 508–516 (2002)Google Scholar
  13. 13.
    Golub, G.H., Van Loan, C.F.: Matrix Computations, third edn. Johns Hopkins Studies in the Mathematical Sciences. The Johns Hopkins University Press, Baltimore (1996)Google Scholar
  14. 14.
    Haveliwala, T.H.: Topic-Sensitive PageRank. In: Proceedings of the World Wide Web Conference (2002). http://www2002.org/CDROM/refereed/127Google Scholar
  15. 15.
    Jeh, G., Widom, J.: Scaling personalized Web search. In: Proceedings of the World Wide Web Conference, pp. 271–279 (2003)Google Scholar
  16. 16.
    Kendall, M.G.: Rank Correlation Methods, fourth edn. Charles Griffin & Co. Ltd., London (1970)Google Scholar
  17. 17.
    Kleinberg, J.M.: Authoritative sources in a hyperlinked environment. Journal of the ACM 46(5), 604–632 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Lee, H.C., Borodin, A.: Perturbation of the hyper-linked environment. In: T. Warnow, B. Zhu (eds.) Computing and Combinatorics, no. 2697 in Lecture Notes in Computer Science, pp. 272–283. Springer, Berlin Heidelberg New York (2003)Google Scholar
  19. 19.
    Lempel, R., Moran, S.: SALSA: The stochastic approach for link-structure analysis. ACM Transactions on Information Systems 19(2), 131–160 (2001)CrossRefGoogle Scholar
  20. 20.
    Lempel, R., Moran, S.: Rank-stability and rank-similarity of link-based Web ranking algorithms in authority-connected graphs. Information Retrieval 8, 219–243 (2005). Special topic issue: Advances in Mathematical/Formal Methods in Information Retrieval.CrossRefGoogle Scholar
  21. 21.
    Marchiori, M.: The quest for correct information on the Web: Hyper search engines. Computer Networks and ISDN Systems 29(8–13), 1225–1235 (1997)CrossRefGoogle Scholar
  22. 22.
    Melucci, M., Pretto, L.: PageRank: When order changes. In: G. Amati, C. Carpineto, G. Romano (eds.) ECIR2007, no. 4425 in Lecture Notes in Computer Science, pp. 581–588. Springer, Berlin Heidelberg New York (2007)Google Scholar
  23. 23.
    Miller, J.C., Rae, G., Schaefer, F., Ward, L.H., LoFaro, T., Farahat, A.: Modifications of Kleinberg’s HITS algorithm using matrix exponentiation and Web log records. In: W.B. Croft, D.J. Harper, D.H. Kraft, J. Zobel (eds.) Proceedings of the 24th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 444–445. ACM (2001)Google Scholar
  24. 24.
    Ng, A.Y., Zeng, A.X., Jordan, M.I.: Stable algorithms for link analysis. In: W.B. Croft, D.J. Harper, D.H. Kraft, J. Zobel (eds.) Proceedings of the 24th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 258–266. ACM (2001)Google Scholar
  25. 25.
    Page, L., Brin, S., Motwani, R., Winograd, T.: The Page-Rank citation ranking: bringing order to the Web (1998). Unpublished manuscript. http://google.stanford.edu/backrub/pageranksub.ps (downloaded: January 2002)Google Scholar
  26. 26.
    Pretto, L.: A theoretical analysis of Google’s PageRank. In: A.H.F. Laender, A.L. Oliveira (eds.) String Processing and Information Retrieval, No. 2476 in Lecture Notes in Computer Science, pp. 131–144. Springer, Berlin Heidelberg New York (2002)Google Scholar
  27. 27.
    Richardson, M., Domingos, P.: The intelligent surfer: Probabilistic combination of link and content information in PageRank. In: Advances in Neural Information Processing Systems, pp. 1441–1448. MIT Press, Cambridge, MA (2002)Google Scholar
  28. 28.
    Seneta, E.: Non-negative Matrices and Markov Chains, second edn. Springer, New York (1981)zbMATHGoogle Scholar
  29. 29.
    Sydow, M.: Can one out-link change your PageRank? In: P.S. Szczepaniak, J. Kacprzyk, A. Niewiadomski (eds.) Advances in Web Intelligence, no. 3528 in Lecture Notes in Computer Science. Lecture Notes in Artificial Intelligence, pp. 408–414. Springer, Berlin Heidelberg New York (2005)Google Scholar
  30. 30.
    Tomlin, J.A.: A new paradigm for ranking pages on the World Wide Web. In: Proceedings of the World Wide Web Conference, pp. 350–355 (2003)Google Scholar
  31. 31.
    Tsaparas, P.: Using non-linear dynamical systems for web searching and ranking. In: A. Deutsch (ed.) Proceedings of the Twenty-third ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, pp. 59–70. ACM (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Luca Pretto
    • 1
  1. 1.Department of Information EngineeringUniversity of PaduaVia Gradenigo, 6/bItaly

Personalised recommendations