Modeling Retrieval and Navigation in Context

  • Massimo Melucci
Part of the The Information Retrieval Series book series (INRE, volume 22)


There is a growing realization that context can constrain Information Retrieval thereby reducing the complexity of a retrieval system. At this aim, a system has to retrieve documents by considering time, place, interaction, task, and many other factors that are implicit in the user environment. Instead of resorting to heuristics, a principled approach to Information Retrieval in Context may help understand how to design these systems. In this chapter, a principled approach to context-aware navigation and retrieval is presented


vector spaces information retrieval in context personalization implicit feedback Vector Space Model 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Belkin, N., Callan, J.: Context-based information access. In: Report of the Discussion Group on Context-Based Information Access of the Workshop on “Information Retrieval and Databases: Synergies and Syntheses”. National Science Foundation, Washington, D.C., USA (2003). Scholar
  2. 2.
    Belkin, N., Oddy, R., Brooks, H.: ASK for Information Retrieval: Part I. Background and Theory. Journal of Documentation 38(2), 61–71 (1982)Google Scholar
  3. 3.
    Deerwester, S., Dumais, S., Furnas, G., Landauer, T., Harshman, R.: Indexing by latent semantic analysis. Journal of the American Society for Information Science 41(6), 391–407 (1990)CrossRefGoogle Scholar
  4. 4.
    Dubin, D.: The most influential paper Gerard Salton never wrote. Library Trends 52(4), 748–764 (2004)Google Scholar
  5. 5.
    Ingwersen, P.: Information Retrieval Interaction. Taylor Graham, London (1992)Google Scholar
  6. 6.
    Melucci, M.: Context modeling and discovery using vector space bases. In: Proceedings of the ACM Conference on Information and Knowledge Management (CIKM), pp. 808–815. ACM Press, Bremen, Germany (2005)Google Scholar
  7. 7.
    Melucci, M.: Ranking in context using vector spaces. In: Proceedings of the ACM Conference on Information and Knowledge Management (CIKM), pp. 477–478. ACM Press, Arlington, VA, USA (2006)Google Scholar
  8. 8.
    Melucci, M.: Exploring a mechanics for context-aware information retrieval. In: Proceedings of the AAAI Spring Symposium on Quantum Interaction. AAAI Press, Stanford, CA, USA (2007)Google Scholar
  9. 9.
    Melucci, M., White, R.: Discovering hidden contextual factors for implicit feedback. In: Proceedings of the Second Workshop on Context-based Information Retrieval. CEUR, Roskilde, Denmark (2007). ForthcomingGoogle Scholar
  10. 10.
    Melucci, M., White, R.: Utilizing a geometry of context for enhanced implicit feedback. In: Proceedings of the ACM Conference on Information and Knowledge Management (CIKM). ACM Press, Lisbon, Portugal (2007). ForthcomingGoogle Scholar
  11. 11.
    van Rijsbergen, C.: Information Retrieval, second edn. Butterworths, London (1979)Google Scholar
  12. 12.
    Rocchio, J.: The SMART Retrieval System. Prentice Hall, Englewood Cliffs, N.J., USA (1971)Google Scholar
  13. 13.
    Salton, G.: Mathematics and information retrieval. Journal of Documentation 35(1), 1–29 (1979)Google Scholar
  14. 14.
    Salton, G.: Automatic Text Processing. Addison-Wesley (1989)Google Scholar
  15. 15.
    Salton, G., Wong, A., Yang, C.: A vector space model for automatic indexing. Communications of the ACM 18(11), 613–620 (1975)zbMATHCrossRefGoogle Scholar
  16. 16.
    van Rijsbergen, C.: The Geometry of Information Retrieval. Cambridge University Press, UK (2004)zbMATHGoogle Scholar
  17. 17.
    White, R., Ruthven, I., Jose, J., van Rijsbergen, C.: Evaluating implicit feedback models using searcher simulations. ACM Transactions on Information Systems 23(3), 325–361 (2005)CrossRefGoogle Scholar
  18. 18.
    Wong, S., Raghavan, V.: Vector space model of information retrieval – a reevaluation. In: Proceedings of the ACM International Conference on Research and Development in Information Retrieval (SIGIR), pp. 167–185. Cambridge, England (1984)Google Scholar
  19. 19.
    Zigoris, P., Zhang, Y.: Bayesian adaptive user profiling with explicit and implicit feedback. In: Proceedings of the ACM Conference on Information and Knowledge Management (CIKM), pp. 397–404 (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Massimo Melucci
    • 1
  1. 1.Department of Information EngineeringUniversity of PaduaVia Gradenigo 6/aItaly

Personalised recommendations