Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 4741))

Abstract

Empirical hardness models predict a solver’s runtime for a given instance of an \(\mathcal{NP}\)-hard problem based on efficiently computable features. Previous research in the SAT domain has shown that better prediction accuracy and simpler models can be obtained when models are trained separately on satisfiable and unsatisfiable instances. We extend this work by training separate hardness models for each class, predicting the probability that a novel instance belongs to each class, and using these predictions to build a hierarchical hardness model using a mixture-of-experts approach. We describe and analyze classifiers and hardness models for four well-known distributions of SAT instances and nine high-performance solvers. We show that surprisingly accurate classifications can be achieved very efficiently. Our experiments show that hierarchical hardness models achieve higher prediction accuracy than the previous state of the art. Furthermore, the classifier’s confidence correlates strongly with prediction error, giving a useful per-instance estimate of prediction error.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, Heidelberg (2006)

    MATH  Google Scholar 

  2. Cheeseman, P., Kanefsky, B., Taylor, W.M.: Where the really hard problems are. In: IJCAI 1991, pp. 331–337 (1991)

    Google Scholar 

  3. Dubois, O., Dequen, G.: A backbone-search heuristic for efficient solving of hard 3-SAT formulae. In: IJCAI 2001, pp. 248–253 (2001)

    Google Scholar 

  4. Eén, N., Biere, A.: Effective preprocessing in SAT through variable and clause elimination. In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp. 61–75. Springer, Heidelberg (2005)

    Google Scholar 

  5. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Hoos, H.H., Mitchell, D.G. (eds.) SAT 2004. LNCS, vol. 3542, pp. 502–518. Springer, Heidelberg (2005)

    Google Scholar 

  6. Gent, I.P., Hoos, H.H., Prosser, P., Walsh, T.: Morphing: Combining structure and randomness. In: AAAI 1999, pp. 654–660 (1999)

    Google Scholar 

  7. Gomes, C., Selman, B., Crato, N., Kautz, H.: Heavy-tailed phenomena in satisfiability and constraint satisfaction problems. J. of Automated Reasoning 24(1), 67–100 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  8. Heule, M., Maaren, H.V.: march_dl: Adding adaptive heuristics and a new branching strategy. J. on Satisfiability, Boolean Modeling and Computation 2, 47–59 (2006)

    MATH  Google Scholar 

  9. Hutter, F., Hamadi, Y., Hoos, H.H., Leyton-Brown, K.: Performance prediction and automated tuning of randomized and parametric algorithms. In: Benhamou, F. (ed.) CP 2006. LNCS, vol. 4204, pp. 213–228. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  10. Joachims, T.: Making large-scale support vector machine learning practical. In: Advances in Kernel Methods: Support Vector Machines, pp. 169–184 (1998)

    Google Scholar 

  11. Krishnapuram, B., Carin, L., Figueiredo, M., Hartemink, A.: Sparse multinomial logistic regression: Fast algorithms and generalization bounds. IEEE Trans. on Pattern Analysis and Machine Intelligence, 957–968 (2005)

    Google Scholar 

  12. Kullmann, O.: Heuristics for SAT algorithms: Searching for some foundations. Technical report (September 1998)

    Google Scholar 

  13. Leyton-Brown, K., Nudelman, E., Andrew, G., McFadden, J., Shoham, Y.: Boosting as a metaphor for algorithm design. In: Rossi, F. (ed.) CP 2003. LNCS, vol. 2833, pp. 899–903. Springer, Heidelberg (2003)

    Google Scholar 

  14. Leyton-Brown, K., Nudelman, E., Andrew, G., McFadden, J., Shoham, Y.: A portfolio approach to algorithm selection. In: IJCAI 2003, pp. 1542–1543 (2003)

    Google Scholar 

  15. Leyton-Brown, K., Nudelman, E., Shoham, Y.: Learning the empirical hardness of optimization problems: The case of combinatorial auctions. In: Van Hentenryck, P. (ed.) CP 2002. LNCS, vol. 2470, pp. 556–572. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  16. Li, C.M., Anbulagan,: Look-ahead versus look-back for satisfiability problems. In: Smolka, G. (ed.) Principles and Practice of Constraint Programming - CP 1997. LNCS, vol. 1330, pp. 341–355. Springer, Heidelberg (1997)

    Google Scholar 

  17. Murphy, K.: The Bayes Net Toolbox for Matlab. In: Computing Science and Statistics: Proc. of the Interface, vol. 33 (2001), http://bnt.sourceforge.net/

  18. Nudelman, E., Leyton-Brown, K., Hoos, H.H., Devkar, A., Shoham, Y.: Understanding random SAT: Beyond the clauses-to-variables ratio. In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 438–452. Springer, Heidelberg (2004)

    Google Scholar 

  19. Selman, B., Mitchell, D.G., Levesque, H.J.: Generating hard satisfiability problems. Artificial Intelligence 81, 17–29 (1996)

    Article  MathSciNet  Google Scholar 

  20. Xu, L., Hutter, F., Hoos, H.H., Leyton-Brown, K.: SATzilla-07: The design and analysis of an algorithm portfolio for SAT. In: CP 2007 (2007)

    Google Scholar 

  21. Zhang, H.: SATO: an efficient propositional prover. In: Proc. of the Int’l. Conf. on Automated Deduction, pp. 272–275 (1997)

    Google Scholar 

  22. Zhang, L., Madigan, C.F., Moskewicz, M.W., Malik, S.: Efficient conflict driven learning in Boolean satisfiability solver. In: Proc. of the Int’l. Conf. on Computer Aided Design, pp. 279–285 (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Christian Bessière

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Xu, L., Hoos, H.H., Leyton-Brown, K. (2007). Hierarchical Hardness Models for SAT. In: Bessière, C. (eds) Principles and Practice of Constraint Programming – CP 2007. CP 2007. Lecture Notes in Computer Science, vol 4741. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74970-7_49

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74970-7_49

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74969-1

  • Online ISBN: 978-3-540-74970-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics