Skip to main content

Tradeoffs in the Complexity of Backdoor Detection

  • Conference paper
Principles and Practice of Constraint Programming – CP 2007 (CP 2007)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 4741))

Abstract

There has been considerable interest in the identification of structural properties of combinatorial problems that lead to efficient algorithms for solving them. Some of these properties are “easily” identifiable, while others are of interest because they capture key aspects of state-of-the-art constraint solvers. In particular, it was recently shown that the problem of identifying a strong Horn- or 2CNF-backdoor can be solved by exploiting equivalence with deletion backdoors, and is NP-complete. We prove that strong backdoor identification becomes harder than NP (unless NP=coNP) as soon as the inconsequential sounding feature of empty clause detection (present in all modern SAT solvers) is added. More interestingly, in practice such a feature as well as polynomial time constraint propagation mechanisms often lead to much smaller backdoor sets. In fact, despite the worst-case complexity results for strong backdoor detection, we show that Satz-Rand is remarkably good at finding small strong backdoors on a range of experimental domains. Our results suggest that structural notions explored for designing efficient algorithms for combinatorial problems should capture both statically and dynamically identifiable properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brockington, M., Culberson, J.C.: Camouflaging independent sets in quasi-random graphs. In: Johnson, D.S., Trick, M.A. (eds.) Cliques, Coloring, and Satisfiability: Second DIMACS Implementation Challenge, American Mathematical Society, vol. 26, pp. 75–88 (1996)

    Google Scholar 

  2. Chandru, V., Hooker, J.N.: Detecting embedded Horn structure in propositional logic. Information Processing Letters 42(2), 109–111 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  3. Chen, H., Dalmau, V.: Beyond hypertree width: Decomposition methods without decompositions. In: van Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 167–181. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  4. Chen, H., Gomes, C., Selman, B.: Formal models of heavy-tailed behavior in combinatorial search. In: Walsh, T. (ed.) CP 2001. LNCS, vol. 2239, Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  5. Dechter, R.: Constraint Processing. Morgan Kaufmann Publishers Inc., San Francisco (2003)

    Google Scholar 

  6. Dechter, R., Pearl, J.: Network-based heuristics for constraint-satisfaction problems. Artif. Intell. 34(1), 1–38 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  7. Deville, Y., Van Hentenryck, P.: An efficient arc consistency algorithm for a class of csp problems. In: IJCAI 1991, pp. 325–330 (1991)

    Google Scholar 

  8. Freuder, E.C.: A sufficient condition for backtrack-free search. J. ACM 29(1), 24–32 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  9. Freuder, E.C.: A sufficient condition for backtrack-bounded search. J. ACM 32(4), 755–761 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  10. Freuder, E.C.: Complexity of k-tree structured constraint satisfaction problems. In: AAAI 1990, Boston, MA, pp. 4–9 (1990)

    Google Scholar 

  11. Gomes, C., Selman, B., Kautz, H.: Boosting Combinatorial Search Through Randomization. In: AAAI 1998, New Providence, RI, pp. 431–438 (1998)

    Google Scholar 

  12. Gomes, C.P., Selman, B., Crato, N., Kautz, H.: Heavy-tailed phenomena in satisfiability and constraint satisfaction problems. J. Autom. Reason. 24(1-2), 67–100 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  13. Hoffmann, J., Gomes, C., Selman, B.: Structure and problem hardness: Goal asymmetry and DPLL proofs in SAT-based planning. Logical Methods in Computer Science 3(1:6) (2007)

    Google Scholar 

  14. ILOG, SA: CPLEX 10.1 Reference Manual (2006)

    Google Scholar 

  15. Kilby, P., Slaney, J.K., Thiébaux, S., Walsh, T.: Backbones and backdoors in satisfiability. In: AAAI 2005, pp. 1368–1373 (2005)

    Google Scholar 

  16. Li, C.M., Anbulagan: Heuristics based on unit propagation for satisfiability problems. In: IJCAI 1997, pp. 366–371 (1997)

    Google Scholar 

  17. Lynce, I., Marques-Silva, J.: Hidden structure in unsatisfiable random 3-SAT: An empirical study. In: ICTAI 2004 (2004)

    Google Scholar 

  18. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: engineering an efficient SAT solver. In: DAC 2001, pp. 530–535 (2001) ISBN 1-58113-297-2.

    Google Scholar 

  19. Nishimura, N., Ragde, P., Szeider, S.: Detecting backdoor sets with respect to Horn and binary clauses. In: Hoos, H.H., Mitchell, D.G. (eds.) SAT 2004. LNCS, vol. 3542. Springer, Heidelberg (2005)

    Google Scholar 

  20. Paris, L., Ostrowski, R., Siegel, P., Sais, L.: Computing Horn strong backdoor sets thanks to local search. In: ICTAI 2006, pp. 139–143 (2006), http://doi.ieeecomputersociety.org/10.1109/ICTAI.2006.43 ISSN 1082-3409

  21. Samer, M., Szeider, S.: Constraint satisfaction with bounded treewidth revisited. In: Benhamou, F. (ed.) CP 2006. LNCS, vol. 4204, pp. 499–513. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  22. Sinz, C., Kaiser, A., Küchlin, W.: Formal methods for the validation of automotive product configuration data. Artificial Intelligence for Engr. Design, Analysis and Manufacturing 17(1), 75–97 (2003)

    Google Scholar 

  23. Szeider, S.: Backdoor sets for DLL subsolvers. J. of Automated Reasoning (2005)

    Google Scholar 

  24. van Beek, P., Dechter, R.: On the minimality and global consistency of row-convex constraint networks. J. ACM 42(3), 543–561 (1995)

    Article  MATH  Google Scholar 

  25. Williams, R., Gomes, C., Selman, B.: Backdoors to typical case complexity. In: IJCAI 2003, pp. 1173–1178 (2003)

    Google Scholar 

  26. Williams, R., Gomes, C., Selman, B.: On the connections between heavy-tails, backdoors, and restarts in combinatorial search. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 222–230. Springer, Heidelberg (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Christian Bessière

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dilkina, B., Gomes, C.P., Sabharwal, A. (2007). Tradeoffs in the Complexity of Backdoor Detection. In: Bessière, C. (eds) Principles and Practice of Constraint Programming – CP 2007. CP 2007. Lecture Notes in Computer Science, vol 4741. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74970-7_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74970-7_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74969-1

  • Online ISBN: 978-3-540-74970-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics