Skip to main content

Learning Gene Regulatory Networks via Globally Regularized Risk Minimization

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 4751))

Abstract

Learning the structure of a gene regulatory network from time-series gene expression data is a significant challenge. Most approaches proposed in the literature to date attempt to predict the regulators of each target gene individually, but fail to share regulatory information between related genes. In this paper, we propose a new globally regularized risk minimization approach to address this problem. Our approach first clusters genes according to their time-series expression profiles—identifying related groups of genes. Given a clustering, we then develop a simple technique that exploits the assumption that genes with similar expression patterns are likely to be co-regulated by encouraging the genes in the same group to share common regulators. Our experiments on both synthetic and real gene expression data suggest that our new approach is more effective at identifying important transcription factor based regulatory mechanisms than the standard independent approach and a prototype based approach.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D’Haeseleer, P., Wen, X., Fuhrman, S., Somogyi, R.: Linear modeling of mrna expression levels during cns development and injury. Pac. Symp. Biocomput., 41–52 (1999)

    Google Scholar 

  2. Chen, K.C., Wang, T.Y., Tseng, H.H., Huang, C.Y.F., Kao, C.Y.: A stochastic differential equation model for quantifying transcriptional regulatory network in saccharomyces cerevisiae. Bioinformatics 21, 2883–2890 (2005)

    Article  Google Scholar 

  3. De Jong, H., Gouze, J.L., Hernandez, C., Page, M., Sari, T., Geiselmann, J.: Qualitative simulation of genetic regulatory networks using piecewise-linear models. Bull. Math. Biol. 66, 301–340 (2004)

    Article  MathSciNet  Google Scholar 

  4. De Hoon, M., Imoto, S., Kobayashi, K., Ogasawara, N., Miyano, S.: Inferring gene regulatory networks from time-ordered gene expression data of bacillussubtilis using differential equations. Pac. Symp. Biocomput., 17–28 (2003)

    Google Scholar 

  5. Li, F., Yang, Y.: Recovering genetic regulatory networks from micro-array data and location analysis data. Genome Informatics 15, 131–140 (2004)

    Google Scholar 

  6. Hartemink, A., Gifford, D., Jaakkola, T., Young, R.: Using graphical models and genomic expression data to statistically validate models of genetic regulatory networks. Pac. Symp. Biocomput., 422–433 (2001)

    Google Scholar 

  7. Yu, J., Smith, V., Wang, P., Hartemink, A., Jarvis, E.: Advances to Bayesian network inference for generating casual networks from observational biological data. Bioinformatics 20, 3594–3603 (2004)

    Article  Google Scholar 

  8. Wang, S.: Reconstructing genetic networks from time ordered gene expression data using Bayesian method with global search algorithm. J. Bioinform. Comput. Biol. 2, 441–458 (2004)

    Article  Google Scholar 

  9. Chen, X., Anantha, G., Wang, X.: An effective structure learning method for constructing gene networks. Bioinformatics 22, 1367–1374 (2006)

    Article  Google Scholar 

  10. Segal, E., Pe’er, D., Regev, A., Koller, D., Friedman, N.: Learning module networks. J. Mach. Learn. Res. 6, 557–588 (2005)

    MathSciNet  Google Scholar 

  11. Bernard, A., Hartemink, A.: Informative structure priors: joint learning of dynamic regulatory networks from multiple types of data. Pac. Symp. Biocomput., 459–470 (2005)

    Google Scholar 

  12. Zou, M., Conzen, S.: A new dynamic Bayesian network (DBN) approach for identifying gene regulatory networks from time course microarray data. Bioinformatics 21, 71–79 (2005)

    Article  Google Scholar 

  13. D’Haeseleer, P., Wen, X., Fuhrman, S., Somogyi, R.: Genetic network inference: from co-expression clustering to reverse engineering. Bioinformatics 16, 707–726 (2000)

    Article  Google Scholar 

  14. Cho, R.J., Campbell, M.J., Winzeler, E.A., Steinmetz, L., Conway, A., Wodicka, L., Wolfsberg, T.G., Gabrielian, A.E., Landsman, D., Lockhart, D.J., Davis, R.W.: A genome-wide transcriptional analysis of the mitotic cell cycle. Mol. Cell. 2, 65–73 (1998)

    Article  Google Scholar 

  15. Ng, A.: Feature selection, L1 vs L2 regularization, and rotational invariance. In: International Conf. on Mach. Learn (ICML) (2004)

    Google Scholar 

  16. Simon, P., Kevin, L., James, T.: Grafting: Fast, incremental feature selection by gradient descent in function space. J. Mach. Learn. Res. 3, 1333–1356 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  17. Guo, Y., Schuurmans, D.: Convex structure learning for Bayesian networks: Polynomial feature selection and approximate ordering. In: Conf. on Uncertainty in Artif. Intell (UAI) (2006)

    Google Scholar 

  18. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge Univ. Press (2004)

    Google Scholar 

  19. Bertsekas, D.: Nonlinear Optimization. Athena Scientific (1995)

    Google Scholar 

  20. van Someren, E., Wessels, L., Reinders, M.: Linear modeling of genetic networks from experimental data. Intelligent Systems for Molecular Biology (ISMB 2000), 355–366 (2000)

    Google Scholar 

  21. Simon, I., Barnett, J., Hannett, N., Harbison, C., Rinaldi, N., Volkert, T., Wyrick, J.J., Zeitlinger, J., Gifford, D., Jaakkola, T., Young, R.: Serial regulation of transcriptional regulators in the yeast cell cycle. Cell 106, 697–708 (2001)

    Article  Google Scholar 

  22. Iyer, V.R., Horak, C.E., Scafe, C.S., Botstein, D., Snyder, M., Brown, P.O.: Genomic binding sites of the yeast cell-cycle transcription factors sbf and mbf. Nature 409, 533–538 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Glenn Tesler Dannie Durand

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Guo, Y., Schuurmans, D. (2007). Learning Gene Regulatory Networks via Globally Regularized Risk Minimization. In: Tesler, G., Durand, D. (eds) Comparative Genomics. RECOMB-CG 2007. Lecture Notes in Computer Science(), vol 4751. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74960-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74960-8_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74959-2

  • Online ISBN: 978-3-540-74960-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics