Skip to main content

Baculovirus Phylogeny Based on Genome Rearrangements

  • Conference paper
Book cover Comparative Genomics (RECOMB-CG 2007)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 4751))

Included in the following conference series:

Abstract

Deriving phylogeny of rapidly evolving viral genomes is one of the most challenging problems in evolutionary studies since gene-based phylogenies often produce conflicting evolutionary trees. Phylogenetic reconstruction methods that consider whole genomes are becoming more reliable with the increasing availability of complete genome sequences and the development of algorithms to compare entire genomes. Here we employ a gene rearrangement-based approach to study Baculovirus phylogeny. Since genome rearrangement algorithms require the set of genes shared between all genomes, the most challenging problem in analyzing rapidly evolving genomes is generating this set of genes. Indeed, there are fewer and fewer genes shared between N species as N increases. We address this challenge by iteratively considering smaller sets of related genomes to find conserved genes. Baculovirus was chosen as a test case because a large number of its constituent genomes have been sequenced and its evolutionary relationships are well studied. The resulting phylogenies show clear separation of Baculoviridae into Nucleopolyhedrovirus (NPV) and Granulovirus (GV) as well as the separation of NPVs into groups I and II. Further species separation results in phylogenetic relationships that are largely consistent with conventional gene-based approaches, with some differences that provide insight into the rearrangements of Baculoviridae genomes. Our open source software, MULGOR (MULtiple Genome Order), which analyzes genes shared between multiple small rapidly evolving genomes, is available at http://realm.sdsc.edu/MULGOR/.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albrecht, J., Nicholas, J., Biller, D., Cameron, K.R., Biesinger, B., Newman, C., Wittmann, S., Craxton, M.A., Coleman, H., Fleckenstein, B., Honess, R.W.: Primary structure of the herpesvirus saimiri genome. J. Virol. 66, 5047–5058 (1992)

    Google Scholar 

  2. Belda, E., Moya, A., Silva, F.: Genome Rearrangement Distances and Gene Order Phylogeny in γ-Proteobacteria. Molecular Biology and Evolution. 22, 1456–1467 (2005)

    Article  Google Scholar 

  3. Blanchette, M., Bourque, G., Sankoff, D.: Breakpoint phylogenies. In: Miyano, S., Takagi, T. (eds.) Genome Informatics 1997, pp. 25–34. Univ. Academy Press (1997)

    Google Scholar 

  4. Bourque, G., Pevzner, P.: Genome-Scale Evolution: Reconstructing Gene Orders in the Ancestral Species. Genome Research. 12(1), 26–36 (2002)

    Google Scholar 

  5. Bourque, G., Pevzner, P.A., Tesler, G.: Reconstructing the genomic architecture of ancestral mammals: lessons from human, mouse, and rat genomes. Genome Research. 14, 507–516 (2004)

    Article  Google Scholar 

  6. Bryant, D.: The complexity of calculating exemplar distances. In: Sankoff, D., Nadeau, J. (eds.) Comparative Genomics, pp. 207–212. Kluwer Academic Publishers, Dordrecht (2000)

    Google Scholar 

  7. Cormen, T.H., Leiserson, C.E., Riverst, R.L, Stein, C.: Introduction to Algorithms. Mc-Graw Hill, New York (2001)

    MATH  Google Scholar 

  8. El-Mabrouk, N.: Genome rearrangement by reversals and insertions/deletions of contiguous segments. In: Giancarlo, R., Sankoff, D. (eds.) CPM 2000. LNCS, vol. 1848, pp. 222–234. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  9. Hannenhalli, S., Pevzner, P.: Transforming cabbage into turnip (polynomial algorithm for sorting signed permutations by reversals). In: Theory of Computing STOC 95, pp. 178–189. ACM Press, New York (1995)

    Google Scholar 

  10. Hannenhalli, S., Chappey, C., Koonin, E., Pevzner, P.: Genome Sequence Comparison and Scenarios for Gene Rearrangements: A Test Case. Genomics. 30, 299–311 (1995)

    Article  Google Scholar 

  11. Hanson, L., Rudis, M., Vasquez-Lee, M., Montgomery, D.: A broadly applicable method to characterize large DNA viruses and adenoviruses based on the DNA polymerase gene. Virology Journal 3, 28 (2006)

    Article  Google Scholar 

  12. Herniou, E., Luque, T., Chen, X., Vlak, J., Winstanley, D., Cory, D., O’Reilly, D.: Use of Whole Genome Sequence Data To Infer Baculovirus Phylogeny. Journal of Virology 75(17), 8117–8126 (2001)

    Article  Google Scholar 

  13. Herniou, E., lszewski, O., Cory, J., O’Reilly, D.: The Genome Sequence and Evolution of Baculoviruses. Annual Review of Entomology 48, 211–234 (2003)

    Article  Google Scholar 

  14. Herniou, E., Olszewski, J., O’Reilly, D., Cory, J.: Ancient Coevolution of Baculoviruses and Their Insect Hosts. Journal of Virology. 78(7), 3244–3251 (2004)

    Article  Google Scholar 

  15. Graur, D., Li, W.: Fundamentals of Molecular Evolution. In: Sinauer Associates, Sunderland, Massachusetts (2000)

    Google Scholar 

  16. Koonin, E.V., Aravind, L., Kondrashov, A.S.: The impact of comparative genomics on our understanding of evolution. Cell 101(6), 573–576 (2000)

    Article  Google Scholar 

  17. Li, L., Stoeckert, C.J., Roos, D.S.: OrthoMCL: Identification of Ortholog Groups for Eukaryotic Genomes. Genome Res. 13(9), 2178–2189 (2003)

    Article  Google Scholar 

  18. Moret, B.M.E., Siepel, A.C., Tang, J., Liu, T.: Inversion medians outperform breakpoint medians in phylogeny reconstruction from gene-order data. In: Guigó, R., Gusfield, D. (eds.) WABI 2002. LNCS, vol. 2452, pp. 521–536. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  19. Murphy, W.J., Larkin, D.M., van der Wind, A.E., Bourque, G., Tesler, G., Auvil, L., Beever, J.E., Chowdhary, B.P., Galibert, F., Gatzke, L., Hitte, C., Meyers, S.N., Milan, D., Ostrander, E.A., Pape, G., Parker, H.G., Raudsepp, T., Rogatcheva, M.B., Schook, L.B., Skow, L.C., Welge, M., Womack, J.E., O’brien, S.J., Pevzner, P.A., Lewin, H.A.: Dynamics of mammalian chromosome evolution inferred from multispecies comparative maps. Science 309(5734), 613–617 (2005)

    Article  Google Scholar 

  20. Murphy, W., Pevzner, P., O’Brien, S.: Mammalian phylogenomics comes of age. Trends in Genetics. 20(12), 631–639 (2004)

    Article  Google Scholar 

  21. Olmstead, R., Palmer, J.: Chloroplast DNA systematics: a review of methods and data analysis. Amer. J. Bot. 81, 1205–1224 (1994)

    Article  Google Scholar 

  22. Palmer, J., Herbon, L.: Plant mitochondrial DNA evolves rapidly in structure, but slowly in sequence. J. Mol. Evol. 27, 87–97 (1988)

    Article  Google Scholar 

  23. Remm, D., Storm, C.E.V., Sonnhammer, E.L.L.: Automatic Clustering of Orthologs and In-paralogs from Pairwise Species Comparisons. J. Mol. Biol. 314, 1041–1052

    Google Scholar 

  24. Rokas, A., Holland, P.W.H.: Rare genomic changes as a tool for phylogenetics. Trends in Ecology & Evolution 15(11), 454–459 (2000)

    Article  Google Scholar 

  25. Sankoff, D.: Genome rearrangement with gene families. Technical Report, Centre de recherches mathématiques, Université de Montréal (1999)

    Google Scholar 

  26. Sankoff, D., Blanchette, M.: Multiple genome rearrangement and breakpoint phylogeny. Journal of Computational Biology 5, 555–570 (1998)

    Article  Google Scholar 

  27. Snel, B., Bork, P., Huynen, M.: Genome phylogeny based on gene content. Nature Genetics. 21, 108–110 (1999)

    Article  Google Scholar 

  28. Snel, B., Bork, P., Huynen, M.: Genomes in Flux: The Evolution of Archaeal and Proteobacterial Gene Content. Nature. 417, 399–403 (2002)

    Google Scholar 

  29. Tesler, G., Pavel, P.: Genome Rearrangements in Mammalian Evolution: Lessons From Human and Mouse Genomes. Genome Res. 13, 37–45 (2003)

    Article  Google Scholar 

  30. Thornton, J.W., DeSalle, R.: Gene family evolution and homology: genomics meets phylogenetics. Annu. Rev. Genomics Hum. Genet. 1, 41–73 (2000)

    Article  Google Scholar 

  31. Wang, L., Warnow, T.: Estimating true evolutionary distances between genomes. In: Proceedings of the Thirty-third Symposium on Theory of Computing (STOC’01), pp. 637–646. ACM Press, New York (2001)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Glenn Tesler Dannie Durand

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Goodman, D., Ollikainen, N., Sholley, C. (2007). Baculovirus Phylogeny Based on Genome Rearrangements. In: Tesler, G., Durand, D. (eds) Comparative Genomics. RECOMB-CG 2007. Lecture Notes in Computer Science(), vol 4751. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74960-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74960-8_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74959-2

  • Online ISBN: 978-3-540-74960-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics