Skip to main content

Multi-break Rearrangements: From Circular to Linear Genomes

  • Conference paper
Comparative Genomics (RECOMB-CG 2007)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 4751))

Included in the following conference series:

  • 398 Accesses

Abstract

Multi-break rearrangements break a genome into multiple fragments and further glue them together in a new order. While 2-break rearrangements represent standard reversals, fusions, fissions, and translocations operations; 3-break rearrangements are a natural generalization of transpositions and inverted transpositions. Multi-break rearrangements in circular genomes were studied in depth inĀ [1] and were further applied to the analysis of chromosomal evolution in mammalian genomesĀ [2]. In this paper we extend these results to the more difficult case of linear genomes. In particular, we give lower bounds for the rearrangement distance between linear genomes and use these results to analyze comparative genomic architecture of mammalian genomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alekseyev, M.A., Pevzner, P.A.: Multi-Break Rearrangements and Chromosomal Evolution. Theoretical Computer Science (to appear, 2007)

    Google ScholarĀ 

  2. Alekseyev, M.A., Pevzner, P.A.: Are There Rearrangement Hotspots in the Human Genome? PLos Computational Biology (to appear, 2007)

    Google ScholarĀ 

  3. Sachs, R.K., Levy, D., Hahnfeldt, P., Hlatky, L.: Quantitative analysis of radiation-induced chromosome aberrations. Cytogenetic and Genome ResearchĀ 104, 142ā€“148 (2004)

    ArticleĀ  Google ScholarĀ 

  4. Levy, D., Vazquez, M., Cornforth, M., Loucas, B., Sachs, R.K., Arsuaga, J.: Comparing DNA damage-processing pathways by computer analysis of chromosome painting data. J. Comput. Biol.Ā 11, 626ā€“641 (2004)

    ArticleĀ  Google ScholarĀ 

  5. Vazquez, M., et al.: Computer analysis of mFISH chromosome aberration data uncovers an excess of very complicated metaphases. Int. J. Radiat. Biol.Ā 78(12), 1103ā€“1115 (2002)

    ArticleĀ  Google ScholarĀ 

  6. Sachs, R.K., Arsuaga, J., Vazquez, M., Hlatky, L., Hahnfeldt, P.: Using graph theory to describe and model chromosome aberrations. Radiat ResearchĀ 158, 556ā€“567 (2002)

    ArticleĀ  Google ScholarĀ 

  7. Alekseyev, M.A., Pevzner, P.A.: Whole Genome Duplications, Multi-Break Rearrangements, and Genome Halving Theorem. In: Proceedings of the 18th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 665ā€“679 (2007)

    Google ScholarĀ 

  8. Nadeau, J.H., Taylor, B.A.: Lengths of Chromosomal Segments Conserved since Divergence of Man and Mouse. Proceedings of the National Academy of SciencesĀ 81(3), 814ā€“818 (1984)

    ArticleĀ  Google ScholarĀ 

  9. Pevzner, P.A., Tesler, G.: Human and mouse genomic sequences reveal extensive breakpoint reuse in mammalian evolution. Proceedings of the National Academy of SciencesĀ 100, 7672ā€“7677 (2003)

    ArticleĀ  Google ScholarĀ 

  10. Sankoff, D., Trinh, P.: Chromosomal breakpoint re-use in the inference of genome sequence rearrangement. In: Proceedings of the Eighth Annual International Conference on Computational Molecular Biology (RECOMB), pp. 30ā€“35 (2004)

    Google ScholarĀ 

  11. Peng, Q., Pevzner, P.A., Tesler, G.: The Fragile Breakage versus Random Breakage Models of Chromosome Evolution. PLoS Comput. Biol.Ā 2, 14 (2006)

    ArticleĀ  Google ScholarĀ 

  12. Murphy, W.J., Larkin, D.M., van der Wind, A.E., Bourque, G., Tesler, G., Auvil, L., Beever, J.E., Chowdhary, B.P., Galibert, F., Gatzke, L., Hitte, C., Meyers, C.N., Milan, D., Ostrander, E.A., Pape, G., Parker, H.G., Raudsepp, T., Rogatcheva, M.B., Schook, L.B., Skow, L.C., Welge, M., Womack, J.E., OBrien, S.J., Pevzner, P.A., Lewin, H.A.: Dynamics of Mammalian Chromosome Evolution Inferred from Multispecies Comparative Map. ScienceĀ 309(5734), 613ā€“617 (2005)

    ArticleĀ  Google ScholarĀ 

  13. van der Wind, A.E., Kata, S.R., Band, M.R., Rebeiz, M., Larkin, D.M., Everts, R.E., Green, C.A., Liu, L., Natarajan, S., Goldammer, T., Lee, J.H., McKay, S., Womack, J.E., Lewin, H.A.: A 1463 Gene Cattle-Human Comparative Map With Anchor Points Defined by Human Genome Sequence Coordinates. Genome ResearchĀ 14(7), 1424ā€“1437 (2004)

    ArticleĀ  Google ScholarĀ 

  14. Bailey, J., Baertsch, R., Kent, W., Haussler, D., Eichler, E.: Hotspots of mammalian chromosomal evolution. Genome BiologyĀ 5(4), R23 (2004)

    ArticleĀ  Google ScholarĀ 

  15. Zhao, S., Shetty, J., Hou, L., Delcher, A., Zhu, B., Osoegawa, K., de Jong, P., Nierman, W.C., Strausberg, R.L., Fraser, C.M.: Human, Mouse, and Rat Genome Large-Scale Rearrangements: Stability Versus Speciation. Genome ResearchĀ 14, 1851ā€“1860 (2004)

    ArticleĀ  Google ScholarĀ 

  16. Webber, C., Ponting, C.P.: Hotspots of mutation and breakage in dog and human chromosomes. Genome ResearchĀ 15(12), 1787ā€“1797 (2005)

    ArticleĀ  Google ScholarĀ 

  17. Hinsch, H., Hannenhalli, S.: Recurring genomic breaks in independent lineages support genomic fragility. BMC Evolutionary BiologyĀ 6, 90 (2006)

    ArticleĀ  Google ScholarĀ 

  18. Ruiz-Herrera, A., Castresana, J., Robinson, T.J.: Is mammalian chromosomal evolution driven by regions of genome fragility? Genome BiologyĀ 7, R115 (2006)

    ArticleĀ  Google ScholarĀ 

  19. Mehan, M.R., Almonte, M., Slaten, E., Freimer, N.B., Rao, P.N., Ophoff, R.A.: Analysis of segmental duplications reveals a distinct pattern of continuation-of-synteny between human and mouse genomes. Human GeneticsĀ 121(1), 93ā€“100 (2007)

    ArticleĀ  Google ScholarĀ 

  20. Kikuta, H., Laplante, M., Navratilova, P., Komisarczuk, A.Z, Engstrom, P.G., Fredman, D., Akalin, A., Caccamo, M., Sealy, I., Howe, K., Ghislain, J., Pezeron, G., Mourrain, P., Ellingsen, S., Oates, A.C., Thisse, C., Thisse, B., Foucher, I., Adolf, B., Geling, A., Lenhard, B., Becker, T.S.: Genomic regulatory blocks encompass multiple neighboring genes and maintain conserved synteny in vertebrates. Genome ResearchĀ 17(5), 545ā€“555 (2007)

    ArticleĀ  Google ScholarĀ 

  21. Sankoff, D.: The signal in the genome. PLoS Computational BiologyĀ 2(4), 320ā€“321 (2006)

    ArticleĀ  Google ScholarĀ 

  22. Bafna, V., Pevzner, P.A.: Genome rearrangement and sorting by reversals. SIAM Journal on ComputingĀ 25, 272ā€“289 (1996)

    ArticleĀ  MATHĀ  MathSciNetĀ  Google ScholarĀ 

  23. Pevzner, P.A.: Computational Molecular Biology: An Algorithmic Approach. MIT Press, Cambridge (2000)

    MATHĀ  Google ScholarĀ 

  24. Hannenhalli, S., Pevzner, P.: Transforming men into mouse (polynomial algorithm for genomic distance problem). In: Proceedings of the 36th Annual Symposium on Foundations of Computer Science, pp. 581ā€“592 (1995)

    Google ScholarĀ 

  25. Tesler, G.: Efficient algorithms for multichromosomal genome rearrangements. J. Comput. Syst. Sci.Ā 65, 587ā€“609 (2002)

    ArticleĀ  MATHĀ  MathSciNetĀ  Google ScholarĀ 

  26. Ozery-Flato, M., Shamir, R.: Two Notes on Genome Rearrangement. Journal of Bioinformatics and Computational BiologyĀ 1, 71ā€“94 (2003)

    ArticleĀ  Google ScholarĀ 

  27. Yancopoulos, S., Attie, O., Friedberg, R.: Efficient sorting of genomic permutations by translocation, inversion and block interchange. BioinformaticsĀ 21, 3340ā€“3346 (2005)

    ArticleĀ  Google ScholarĀ 

  28. Bader, M., Ohlebusch, E.: Sorting by weighted reversals, transpositions, and inverted transpositions. In: Apostolico, A., Guerra, C., Istrail, S., Pevzner, P., Waterman, M. (eds.) RECOMB 2006. LNCS (LNBI), vol.Ā 3909, pp. 563ā€“577. Springer, Heidelberg (2006)

    ChapterĀ  Google ScholarĀ 

  29. Gu, Q.P., Peng, S., Sudborough, H.: A 2-approximation algorithm for genome rearrangements by reversals and transpositions. Theoret. Comput. Sci.Ā 210, 327ā€“339 (1999)

    ArticleĀ  MATHĀ  MathSciNetĀ  Google ScholarĀ 

  30. Hartman, T., Sharan, R.: A 1.5-approximation algorithm for sorting by transpositions and transreversals. In: Jonassen, I., Kim, J. (eds.) WABI 2004. LNCS (LNBI), vol.Ā 3240, pp. 50ā€“61. Springer, Heidelberg (2004)

    Google ScholarĀ 

  31. Lin, G.H., Xue, G.: Signed genome rearrangements by reversals and transpositions: models and approximations. Theoret. Comput. Sci.Ā 259, 513ā€“531 (2001)

    ArticleĀ  MATHĀ  MathSciNetĀ  Google ScholarĀ 

  32. Lin, Y.C., Lu, C.L., Chang, H.-Y., Tang, C.Y.: An Efficient Algorithm for Sorting by Block-Interchanges and Its Application to the Evolution of Vibrio Species. J. Comput. Biol.Ā 12, 102ā€“112 (2005)

    ArticleĀ  Google ScholarĀ 

  33. Radcliffe, A.J., Scott, A.D., Wilmer, E.L.: Reversals and Transpositions Over Finite Alphabets. SIAM J. Discrete Math.Ā 19, 224ā€“244 (2005)

    ArticleĀ  MATHĀ  MathSciNetĀ  Google ScholarĀ 

  34. Walter, M.E., Dias, Z., Meidanis, J.: Reversal and transposition distance of linear chromosomes. In: String Processing and Information Retrieval: A South American Symposium (SPIRE), pp. 96ā€“102 (1998)

    Google ScholarĀ 

  35. Bafna, V., Pevzner, P.A.: Sorting permutations by transpositions. SIAM J. Discrete Math.Ā 11, 224ā€“240 (1998)

    ArticleĀ  MATHĀ  MathSciNetĀ  Google ScholarĀ 

  36. Christie, D.A.: Genome Rearrangement Problems. PhD thesis, University of Glasgow (1999)

    Google ScholarĀ 

  37. Walter, M.E., Reginaldo, L., Curado, A.F., Oliveira, A.G.: Working on the Problem of Sorting by Transpositions on Genome Rearrangements. In: Baeza-Yates, R.A., ChĆ”vez, E., Crochemore, M. (eds.) CPM 2003. LNCS, vol.Ā 2676, pp. 372ā€“383. Springer, Heidelberg (2003)

    ChapterĀ  Google ScholarĀ 

  38. Hartman, T.: A simpler 1.5-approximation algorithm for sorting by transpositions. In: Baeza-Yates, R.A., ChĆ”vez, E., Crochemore, M. (eds.) CPM 2003. LNCS, vol.Ā 2676, pp. 156ā€“169. Springer, Heidelberg (2003)

    ChapterĀ  Google ScholarĀ 

  39. Elias, I., Hartman, T.: A 1.375-Approximation Algorithm for Sorting by Transpositions. In: Casadio, R., Myers, G. (eds.) WABI 2005. LNCS (LNBI), vol.Ā 3692, pp. 204ā€“214. Springer, Heidelberg (2005)

    ChapterĀ  Google ScholarĀ 

  40. Pevzner, P., Tesler, G.: Genome Rearrangements in Mammalian Evolution: Lessons from Human and Mouse Genomes. Genome ResearchĀ 13(1), 37ā€“45 (2003)

    ArticleĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Glenn Tesler Dannie Durand

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Alekseyev, M.A. (2007). Multi-break Rearrangements: From Circular to Linear Genomes. In: Tesler, G., Durand, D. (eds) Comparative Genomics. RECOMB-CG 2007. Lecture Notes in Computer Science(), vol 4751. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74960-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74960-8_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74959-2

  • Online ISBN: 978-3-540-74960-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics