Skip to main content

Learning Robust Objective Functions with Application to Face Model Fitting

  • Conference paper
Pattern Recognition (DAGM 2007)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4713))

Included in the following conference series:

Abstract

Model-based image interpretation extracts high-level information from images using a priori knowledge about the object of interest. The computational challenge is to determine the model parameters that best match a given image by searching for the global optimum of the involved objective function. Unfortunately, this function is usually designed manually, based on implicit and domain-dependent knowledge, which prevents the fitting task from yielding accurate results.

In this paper, we demonstrate how to improve model fitting by learning objective functions from annotated training images. Our approach automates many critical decisions and the remaining manual steps hardly require domain-dependent knowledge. This yields more robust objective functions that are able to achieve the accurate model fit. Our evaluation uses a publicly available image database and compares the obtained results to a recent state-of-the-art approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hanek, R.: Fitting Parametric Curve Models to Images Using Local Self-adapting Separation Criteria. PhD thesis, Technische Universität München (2004)

    Google Scholar 

  2. Cootes, T.F., Taylor, C.J.: Statistical models of appearance for computer vision. Technical report, University of Manchester, Manchester M13 9PT, UK (2004)

    Google Scholar 

  3. Cootes, T.F., Taylor, C.J.: Active shape models – smart snakes. In: Proc. of the 3rd British Machine Vision Conference 1992, pp. 266–275. Springer, Heidelberg (1992)

    Google Scholar 

  4. Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: Computer Vision and Pattern Recognition (CVPR) (2001)

    Google Scholar 

  5. Witten, I.H., Frank, E.: Data Mining: Practical machine learning tools and techniques, 2nd edn. Morgan Kaufmann, San Francisco (2005)

    MATH  Google Scholar 

  6. Jesorsky, O., Kirchberg, K.J., Frischholz, R.: Robust face detection using the hausdorff distance. In: Proc. of the 3rd Int. Conference on Audio- and Video-Based Biometric Person Authentication, Halmstad, Sweden, pp. 90–95. Springer, Heidelberg (2001)

    Google Scholar 

  7. Cristinacce, D., Cootes, T.F.: Facial feature detection and tracking with automatic template selection. In: 7th IEEE International Conference on Automatic Face and Gesture Recognition, Southampton, England, pp. 429–434. IEEE Computer Society Press, Los Alamitos (2006)

    Chapter  Google Scholar 

  8. Ginneken, B., Frangi, A., Staal, J., Haar, B., Viergever, R.: Active shape model segmentation with optimal features. Trans. on Medical Imaging 21, 924–933 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Fred A. Hamprecht Christoph Schnörr Bernd Jähne

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wimmer, M., Pietzsch, S., Stulp, F., Radig, B. (2007). Learning Robust Objective Functions with Application to Face Model Fitting. In: Hamprecht, F.A., Schnörr, C., Jähne, B. (eds) Pattern Recognition. DAGM 2007. Lecture Notes in Computer Science, vol 4713. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74936-3_49

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74936-3_49

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74933-2

  • Online ISBN: 978-3-540-74936-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics