Skip to main content

Bayesian Model Selection for Optical Flow Estimation

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4713))

Abstract

Global optical flow techniques minimize a mixture of two terms: a data term relating the observable signal with the optical flow, and a regularization term imposing prior knowledge/assumptions on the solution. A large number of different data terms have been developed since the first global optical flow estimator proposed by Horn and Schunk [1]. Recently [2], these data terms have been classified with respect to their properties. Thus, for image sequences where certain properties about image as well as motion characteristics are known in advance, the appropriate data term can be chosen from this classification. In this contribution, we deal with the situation where the optimal data term is not known in advance. We apply the Bayesian evidence framework for automatically choosing the optimal relative weight between two data terms as well as the regularization term based only on the given input signal.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Horn, B., Schunck, B.: Determining optical flow. Artificial Intelligence 17, 185–204 (1981)

    Article  Google Scholar 

  2. Weickert, J., Bruhn, A., Brox, T., Papenberg, N.: A survey on variational optic flow methods for small displacements. In: Scherzer, O. (ed.) Mathematical models for registration and applications to medical imaging, pp. 103–136 (2006)

    Google Scholar 

  3. Haussecker, H., Fleet, D.: Computing optical flow with physical models of brightness variation. In: Proc. Computer Vision and Pattern Recognition (2000)

    Google Scholar 

  4. Krajsek, K., Mester, R.: Marginalized maximum a posteriori hyper-parameter estimation for global optical flow techniques. In: Bayesian Inference and Maximum Entropy Methods In Science and Engineering, Paris, France (2006)

    Google Scholar 

  5. Krajsek, K., Mester, R.: A maximum likelihood estimator for choosing the regularization parameters in global optical flow methods. In: IEEE International Conference on Image Processing, Atlanta, USA (2006)

    Google Scholar 

  6. Lucas, B., Kanade, T.: An iterative image registration technique with an application to stereo vision. In: Proc. Seventh International Joint Conference on Artificial Intelligence, Vancouver, Canada, August 1981, pp. 674–679 (1981)

    Google Scholar 

  7. Bigün, J., Granlund, G.H.: Optimal orientation detection of linear symmetry. In: Proc. ICCV, pp. 433–438. IEEE, Los Alamitos (1987)

    Google Scholar 

  8. Jähne, B.: Digital Image Processing, 4th edn. Springer, Heidelberg (1998)

    Google Scholar 

  9. Simoncelli, E., Adelson, E.H., Heeger, D.J.: Probability distribution of optical flow. In: Proc. IEEE Conference on Computer Vision and Pattern Recognition, Hawaii, pp. 310–315. IEEE Computer Society Press, Los Alamitos (1991)

    Chapter  Google Scholar 

  10. Weickert, J., Schnörr, C.: A theoretical framework for convex regularizers in pde-based computation of image motion. Int. J. Comput. Vision 45, 245–264 (2001)

    Article  MATH  Google Scholar 

  11. Black, M.J., Anandan, P.: A framework for the robust estimation of optical flow. In: Proc. Fourth International Conf. on Computer Vision (ICCV 1993), Berlin, Germany, pp. 231–236 (1993)

    Google Scholar 

  12. Alvarez, L., Weickert, J., Sánchez, J.: Reliable estimation of dense optical flow fields with large displacements. Int. J. Comput. Vision 39 (2000)

    Google Scholar 

  13. Simoncelli, E.P.: Design of multi-dimensional derivative filters. In: Intern. Conf. on Image Processing, Austin TX (1994)

    Google Scholar 

  14. Lee, D.J., Ipsen, I.C.F.: Zone determinant expansions for nuclear lattice simulations. Phys. Rev. C 68, 64003 (2003)

    Article  Google Scholar 

  15. Scharr, H.: Optimal Operators in Digital Image Processing. PhD thesis, Interdisciplinary Center for Scientific Computing, Univ. of Heidelberg (2000)

    Google Scholar 

  16. Barron, J.L., Fleet, D.J., Beauchemin, S.S.: Performance of optical flow techniques. Int. Journal of Computer Vision 12, 43–77 (1994)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Fred A. Hamprecht Christoph Schnörr Bernd Jähne

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Krajsek, K., Mester, R. (2007). Bayesian Model Selection for Optical Flow Estimation. In: Hamprecht, F.A., Schnörr, C., Jähne, B. (eds) Pattern Recognition. DAGM 2007. Lecture Notes in Computer Science, vol 4713. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74936-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74936-3_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74933-2

  • Online ISBN: 978-3-540-74936-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics