Skip to main content

Auszug

Eine Zusammenstellung harmonisierter Normen ist in der ISO 10993 gegeben, welche vom technischen Komitee 194 der Internationale Standard Organisation (ISO) erarbeitet wurde. Die ISO 10993 ist unterteilt in verschiedene Unternormen. ISO 10993-1 — Guidance on selection of tests — umfasst Richtlinien zur Betrachtung der Sicherheit von medizinischen Instrumenten und Implantaten. Diese können wie folgt zusammengefasst werden:

  1. 1.

    Charakterisierung der Materialien bezüglich ihrer chemischen Zusammensetzung, möglichen Verunreinigungen und Extraktionsstoffen.

  2. 2.

    Untersuchung des potentiellen Auftretens von herausgelösten Substanzen und Degradationsprodukten aus einem medizinischen Instrument oder Implantat.

  3. 3.

    Toxizitätsuntersuchung zur Ermittlung der toxischen Wirkung von herausgelösten Substanzen und Degradationsprodukten.

  4. 4.

    Durchführung der Tests gemäss GLP (good laboratory practice), ausgeführt von kompetenten und informierten Personen.

  5. 5.

    Die experimentell ermittelten Daten sollten den Behörden zur Verfügung gestellt werden können.

  6. 6.

    Bei Änderung der chemischen Zusammensetzung der Materialien oder der Herstellungsbedingungen sowie bei Einsatz für zusätzliche Indikationen sollte ein potentieller toxikologischer Effekt in Patienten aufgrund dieser Änderung untersucht werden.

  7. 7.

    Alle relevanten Daten, inklusive Informationen von nicht klinischen Quellen, klinischen Studien und Markterfahrungen sollte bei der Evaluation eines Medizinproduktes berücksichtigt werden.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

3.7 Literatur

  1. Pschyrembel, Klinisches Wörterbuch, 251, Walter de Gruyter, Berlin, 1990.

    Google Scholar 

  2. Wintermantel E., Inauguration lecture, ETH-Zürich, Switzerland, 1993.

    Google Scholar 

  3. Schenk R.K., Bone response to grafts and implants, in Perspectives on biomaterials, Materials science monographs, Lin O.C.C., Chao E.Y.S. (eds.), Elsevier, Taipei, Taiwan, 1986, p. 121–136.

    Google Scholar 

  4. Williams D.F., Consensus and definitions in biomaterials, in Advances in biomaterials, 8, de Putter C., de Lange K., de Groot K., Lee A.J.C. (eds.), Elsevier Science Publishers B.V., Amsterdam, 1988, p. 11–16.

    Google Scholar 

  5. Black J., Systemics effects of biomaterials, Biomaterials, 5, 1984, p. 11 ff.

    Google Scholar 

  6. Hench L.L., Wilson J., An introduction to bioceramics, 1–24, World Scientific Publishing Co. Pte. Ltd., Singapore, 1993.

    Google Scholar 

  7. Hench L.L., Bioceramics: from concept to clinic, Journal of the American Ceramic Society, 74,7, 1991, p. 1487–1510.

    Article  CAS  Google Scholar 

  8. Osborn J.F., The biological profile of hydroxyapatite ceramic with respect to the cellular dynamics of animal and human soft tissue and mineralized tissue under unloaded and loaded conditions, in Biomaterials degradation, Barbosa M.A. (ed.), Elsevier Science Publishers B.V., 1991, p. 185–225.

    Google Scholar 

  9. Osborn J.F., Physiologische Verankerung von belasteten Endoprothesen durch Verbundosteogenese — Ergebnisse humanhistologischer Auswertung hydroxylapatitbeschichteter Titanschäfte, in Neuere Ergebnisse in der Osteologie, Willert H.G., Heuck F.H.W. (eds.), Springer-Verlag, Heidelberg, 1989, p. 358–364.

    Google Scholar 

  10. Folkman J., Tucker R.W., Cell configuration, substrate and growth control, in Cell surface, mediator of developmental processes, Subtellny S., Wessells N.K. (eds.), Academic Press, New York, NY, 1980.

    Google Scholar 

  11. Silver F., Doillon C., Biocompatibility — Interactions of biological and implantable materials, 1, VCH Publishers, Inc., New York, 1989.

    Google Scholar 

  12. Freshney R.I., Three-dimensional culture systems, in Culture of animal cells, Freshney R.I. (ed.), Alan R. Liss Inc., New York, 1987, p. 297–307.

    Google Scholar 

  13. Eagle H., The specific amino acid requirements of mammalian cells (stain L) intissue culture, J. Biol. Chem., 214, 1955, p. 839.

    CAS  Google Scholar 

  14. Moore G.E., Gerner R.E., Franklin H.A., Culture of normal human leukocytes, J. Am. Med. Assoc., 199, 1967, p. 519–524.

    Article  CAS  Google Scholar 

  15. Kleinig H., Sitte P., Zellbiologie, 3rd Edition, Gustav Fischer Verlag, Stuttgert, Germany, 1992.

    Google Scholar 

  16. ISO 10993-5, Biological testing of Medical Devices — Part 5: Tests for Cytotoxicity, in vitro methods, 1991.

    Google Scholar 

  17. Pizzoferratto A., Ciapetti G., Stea S., Cenni E., Arciola C.R., Granchi D., Savariono L., Cell culture methods for testing biocompatibility, Clinical Materials, 15, 1994, p. 173–190.

    Article  Google Scholar 

  18. Theory of the Coulter Counter® — Bulletin T-1, Coulter electronics Ltd., Luton, England, 1957.

    Google Scholar 

  19. Labarca C., Paigen K., A simple, rapid, and sensitive DNA assay procedure, Anal. Biochem., 102, 1980, p. 344–352.

    Article  CAS  Google Scholar 

  20. Brunk C.F., Jones K.C., James T.W., Assay for nanogram quantities of DNA in cellular homogenates, Anal. Biochem., 92, 1979, p. 497–500.

    Article  CAS  Google Scholar 

  21. Bradford M., A rapid and sensitive method for the quatitation of microgram quantities of protein using the principle of protein-dye binding, Anal. Biochem., 72, 1976, p. 248–254.

    Article  CAS  Google Scholar 

  22. Jacobson M.S., Parkman R., Button L.N., The toxicity of human serum stored in flexible polyvinylchloride containers on human fibroblast cell cultures, Res. Commun. Chem. Pathol. Pharmacol., 9, 1974, p. 315.

    CAS  Google Scholar 

  23. Grasso P., Gaydon J., Hendy R.J., The safety testing of medical plastics. II An assessment of lysosomal changes as an index of toxicity in cell cultures, Food. Cosmet. Toxicol., 11, 1973, p. 255.

    Article  CAS  Google Scholar 

  24. Neupert G., Thieme V., Hofmann H., Berger G., Adhesion, spreading and growth of animal cells on the surface of glass ceramic Ap40 — a contribution to the cell compatibility of dental permanent hard tissue implants, Exp. Pathol., 25, 1984, p. 51.

    CAS  Google Scholar 

  25. Murphy W.M., Biocompatibility of some endodontic materials in vivo and in vitro, in Biocompatibility of implant materials, Williams D. (ed.), Sector Publishing, London, 1976.

    Google Scholar 

  26. Borenfreund E., Puerner J.A., Toxicity determination in vitro by morphological alterations and neutral red absorption, Toxicology Letters, 24, 1985, p. 119–124.

    Article  CAS  Google Scholar 

  27. Mosmann T., Rapid calorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays, J. Immunol. Methods, 65, 1983, p. 55–63.

    Article  CAS  Google Scholar 

  28. DiPaolo J.A., In vitro test systems for cancer chemotherapy. III Preliminary studies of spontaneous mammary tumors in mice, Cancer Chemother., 44, 1965, p. 19–24.

    CAS  Google Scholar 

  29. Holden H.T., Lichter W., Sigel M.M., Quantitive methods for measuring cell growth and death, in Tissue culture methods and applications, Kruse Jr. P.F., Patterson M.K. (eds.), Academic Press, New York, 1973, p. 408–412.

    Google Scholar 

  30. Guess W.L., Rosenblath S.A., Schmidt B., Autian J., Agar diffusion method for toxicity screening of plastics on cultured cell monolayers, J. Pharm. Sci., 54, 1965, p. 1545.

    Article  CAS  Google Scholar 

  31. Dillingham E.O., Primary acute toxicity screen for biomaterials: Rationale, in vitro/in vivo relationship and interlaboratory performance, in Cell-culture test methods, Brown S.A. (ed.), ASTM special technical publication 810, Philadelphia, PA, 1983, p. 51–70.

    Google Scholar 

  32. Wilsnack R.E., Quantitative cell culture biocompatibility testing of medical devices and correlation to animal tests, Biomater. Med. Devices Artif. Organs, 4, 1976, p. 235.

    CAS  Google Scholar 

  33. BSI, Evaluation of medical devices for biological hazards, BS 5736, London, 1981.

    Google Scholar 

  34. Petitmermet M., Favre A., Shah B., Rösler U., Mayer J., Wintermantel E., Toxicity screening of waste products using cell culture techniques, in Monitoring and Verification of Bioremediation, 3, Hinchee R.E., Douglas G.S., Ong S.K. (eds.), Battelle Press, Columbus, Ohio, USA, 1995, p. 223–232.

    Google Scholar 

  35. Ames B.N., Identifying environemental chemicals causing mutations and cancer, Science, 204, 1980, p. 587–593.

    Article  Google Scholar 

  36. Müller-Lierheim W.G.K., cytotoxicity tests in the biological evaluation of medical devices, in Medical textiles for implantation, Planck H., Dauner M., Renardy M. (eds.), Springer verlag, Berlin, Germany, 1990, p. 77–84.

    Google Scholar 

  37. Rae T., Tissue culture techniques in biocompatibility testing, in Techniques of biocompatibility testing, II, Williams D.F. (ed.), CRC Press, Inc., Boca Raton, FL, USA, 1986, p. 81–93.

    Google Scholar 

  38. Elsner P., Nickelallergie im Spannungsfeld von Metallkunde, Medizin und Gesetzgebung, Zürich, Schweiz, 1995.

    Google Scholar 

  39. Nemery B., Hoet P.H.M., Use of isolated lung cells in pulmonary toxicology, Toxicology in Vitro, 7,4, 1993, p. 359–364.

    Article  CAS  Google Scholar 

  40. van Houdt J.J., Indoor and outdoor airborne particles — an in vitro study on mutagenic potential and toxicological implications, Landbouwhogeschool Wageningen, 1988.

    Google Scholar 

  41. Merchant J.A., Human epidemiology: A review of fiber type and characteristics in the development of malignant and nonmalignant disease, Environmental Health Perspectives, 88, 1990, p. 287–293.

    Article  CAS  Google Scholar 

  42. Davison R.L., Natusch D.F.S., Wallace J.R., Trace elements in fly ash, Environmental Science & Engineering, 8,13, 1974, p. 1107–1113.

    CAS  Google Scholar 

  43. Natusch D.F.S., Wallace J.R., Toxic trace elements: Preferential concentration in respirable particles, Science, 183, 1974, p. 202–204.

    Article  CAS  Google Scholar 

  44. Dettwiler B., Aufbereitung von KVA-Rückständen mittels Extraktion, Öffentliches Symposium des koordinierten Projektes “Rückstandsbehandlung”, ETH Hönggerberg, 1995.

    Google Scholar 

  45. Cho K., Cho Y.J., Shrivastava D.K., Kapre S.S., Acute lung disease after exposure to fly ash, Chest, 106, 1994, p. 309–311.

    Article  Google Scholar 

  46. Miller K., Mineral dusts: asbestos, silica and others, in Principles and Practice of Immunotoxicology, Miller K., Turk J., Nicklin S. (eds.), Backwell Scientific Publications, Oxford, 1992.

    Google Scholar 

  47. Konietzko N., Teschler H., Asbest und Lunge, Steinkopff Verlag, Darmstadt, 1992.

    Google Scholar 

  48. Stierum R.H., Hageman G.J., Welle I.J., Albering H.J., Schreurs J.G., Kleinjans J.C., Evaluation of exposure reducing measures on parameters of genetic risk in a population occupationally exposed to coal fly ash, Mutation Research, 319,4, 1993, p. 245–255.

    Article  CAS  Google Scholar 

  49. Negishi T., Nishimura I., Lung free cells following short-term inhalation of coal fly ash particles in golden hamsters, Jikken-Dobutsu, 42,1, 1993, p. 51–59.

    CAS  Google Scholar 

  50. Bajpai R., Waseem M., Gupta G.S., Kaw J.L., Ranking toxicity of industrial dusts by bronchoalveolar lavage fluid analysis, Toxicology, 73,2, 1992, p. 161–167.

    Article  CAS  Google Scholar 

  51. Technische Regeln für Gefahrenstoffe, Verzeichnis krebserzeugender, erbgutschädigender oder fortpflanzungsgefährdender Stoffe, TRGS 906, 1994.

    Google Scholar 

  52. Privalova L.I., Kislitsina N.S., Sharapova N.E., Katsnelson B.A., Experimental study on risk factors of pneumoconiosis caused by dust in the industry of new construction materials containing glass and coal waste, Med Tr Prom Ekol, 8, 1994, p. 8–12.

    Google Scholar 

  53. Bellmann B., Muhle H., Kamstrup O., Draeger U.F., Investigation on the durability of manmade vitreous fibers in rat lungs, Environmental Health Perspectives, 102Suppl 5, 1994, p. 185–189.

    Article  CAS  Google Scholar 

  54. Bauer J.F., Law B.D., Hesterberg T.W., Dual pH durability studies of manmade vitreous fiber (MMVF), Environmental Health Perspectives, 102Suppl 5, 1994, p. 61–65.

    Article  Google Scholar 

  55. Davis J.M., The role of clearance and dissolution in determining the durability or biopersistence of mineral fibers, Environmental Health Perspectives, 102Suppl 5, 1994, p. 113–117.

    Article  CAS  Google Scholar 

  56. Pott F., Roller M., Kamino K., Bellmann B., Significance of durability of mineral fibers for their toxicity and carcinogenic potency in the abdominal cavity of rats in comparison with the low sensitivity of inhalation studies, Environmental Health Perspectives, 102Suppl 5, 1994, p. 145–150.

    Article  CAS  Google Scholar 

  57. Linster W., Schmidt A., Asbest — Kompendium für Betroffene, Planer und Sanierer, Verlag C.F. Müller, Karlsruhe, 1993.

    Google Scholar 

  58. Eblenkamp, M., Persönliche Mitteilung, München 2007

    Google Scholar 

  59. Schwarzbauer J.E., Fibronectin: from gene to protein, Curr. Opin. Cell Biol., 3, 1991, p. 786–791.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer

About this chapter

Cite this chapter

Wintermantel, E., Shah-Derler, B., Bruinink, A., Petitmermet, M., Blum, J., Ha, S.W. (2008). Biokompatibilität. In: Medizintechnik Life Science Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74925-7_3

Download citation

Publish with us

Policies and ethics