Skip to main content

Mikroreaktortechnik für Tissue Engineering

  • Chapter
Medizintechnik Life Science Engineering
  • 18k Accesses

Auszug

An vielen Geweben in unserem Organismus bestehen funktionelle Barrieren. Besondere Bedeutung haben dabei die Epithelien, die auf ihrer luminalen und basalen Seite ganz unterschiedlichem Milieu ausgesetzt sind. Wichtig ist diese Besonderheit beim Testen neuer Biomaterialien und beim Tissue engineering. Hierbei werden lebende Zellen mit einer künstlichen extrazellulären Matrix in Kontakt gebracht. Um realistische Informationen über die Interaktionen zwischen dem jeweiligen Gewebe und der Matrix zu erhalten, werden reifende Gewebe unter in vitro Bedingungen mechanischem und rheologischem Stress über lange Zeiträume ausgesetzt. Um die Epithelbarriere nicht zu beschädigen, müssen Undichtigkeiten und Druckunterschiede im Kultursystem vermieden werden. Zudem sollten die Umgebungseinflüsse so gestaltet werden, dass zellbiologische Funktionen im generierten Gewebe entstehen können und gleichzeitig eine zellu läre Dedifferenzierung vermieden wird. Da in konventionellen Kulturschalen diese Arbeiten nicht durchgeführt werden können, wurden neue Gewebekulturmethoden entwickelt. Dazu gehören kompatible Gewebeträger mit individuell einsetzbaren Matrices für die Gewebeansiedlung, Perfusionskulturcontainer, Gradientencontainer und Gasexpandermodule für einen permanenten Kulturmediumaustausch mit minimierter Gasblasenbildung.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

17.9 Literatur

  1. Perka C., Spitzer R.S., Lindenhayn K., Sittinger M., Schultz O., Matrix mixed culture: new methodology for chondrocyte culture and preparation of cartilage transplants, J. Biomed. Mater. Res., 49,3, 2000, p. 305–311.

    Article  CAS  Google Scholar 

  2. Kreklau B., Sittinger M., Mensing M.B., Voigt C., Berger G., Burmester G.R., Rahmanzadeh R., Gross U., Tissue engineering of biphasic joint cartilage transplants, Biomaterials, 20, 2000, p. 1743–1749.

    Article  Google Scholar 

  3. Rotter N., Aigner J., Naumann A., Planck H., Hammer C., Burmester G., Sittinger M., Cartilage reconstruction in head and neck surgery: Comparison of resorbable polymer scaffolds for tissue engineering of human septal cartilage, J. Biomat. Res., 42,3, 1998, p. 347–356.

    Article  CAS  Google Scholar 

  4. Sittinger M., Schultz O., Keyszer G., Minuth W.W., Burmester G.R., Artificial tissues in perfusion culture, Int. J. Artificial Org., 20,1, 1997, p. 57–62.

    CAS  Google Scholar 

  5. Van Dorp A.G.M., Verhoeven M.C.H., Van der Halt, Van der Meij T.H., Koerten H.K., Ponec M., A modified culture system for epidermal cells for grafting puposes: an in vitro and in vivo study, Wound Rep. Reg., 7, 1999, p. 214–225.

    Google Scholar 

  6. Gustafson C.J., Kratz G., Cultured autologous keratinocytes on a cell free dermis in the treatment of full thickness wounds, Burns, 25, 1999, p. 331–335.

    Article  CAS  Google Scholar 

  7. Waybill P.N., Hopkins L.J., Arterial and Venous Smooth muscle cell proliferation in response to co culture with arterial and venous endothelial cells, JVIR, 10, 1999, p. 1051–1057.

    CAS  Google Scholar 

  8. Surowiec S.M., Conklin B.S., Li J.S., Lin P.H., Weiss J., Lumsden A.B., Chen C., A new perfusion culture system used to study human vein, J. Surgical Res., 88, 2000, p. 34–41.

    Article  CAS  Google Scholar 

  9. Niklason L.E., Gao J., Abbott W.M., Hirschi K.K., Houser S., Marini R., Langer R., Functional arteries grown in vitro, Science, 284, 1999, p. 489–493.

    Article  CAS  Google Scholar 

  10. Papas K.K., Long R.C., Sambanis A., Constantinidis I. Development of a bioartificial pancreas: effect of oxygen on long-term entrapped ßTC3 cell cultures, Biotechnology and Bioengineering, 66,4, 1999, p. 231–237.

    Article  CAS  Google Scholar 

  11. Coppelli A., Ariva C., Giannarelli R., Marchetti P., Viacava P., Naccarato A.G., Lorenzetti M., Cosimi S., Cecchetti P., Navalesi R., Long term survival and function of isolated bovine pancreatic islets maintained in different culture media, Acta Diabetol, 33, 1996, p. 166–168.

    Article  CAS  Google Scholar 

  12. Ohshima N., Tissue engineering aspects of the development of bioartificial livers, J. Chin. Inst. Chem. Ingrs., 28,6, 1997, p. 441–453.

    CAS  Google Scholar 

  13. Bader A., Frühauf N., Tiedge M., Drinkgern M., De Bartolo L., Borlak J.T., Steinhoff G., Haverich A., Enhanced oxygen delivery reverses anaerobic metabolic states in prolonged sandwich rat hepatocyte culture, Eptl. Cell Research, 246, 1999, p. 221–232.

    Article  CAS  Google Scholar 

  14. Humes H.D., Buffington D.A., MacKay S.M., Funke A., Weitzel W.F., Replacement of renal function in uremic animals with a tissue engineered kidney, Nature Biotechnology, 17, 1999, p. 451–455.

    Article  CAS  Google Scholar 

  15. Fey-Lamprecht F., Gross U., Groth T.H., Albrecht W., Paul D., Fromm M., Gitter A.H., Functionality of MDCK kidney tubular cells on flat polymer membranes for biohybrid kidney, J. Material Science in Medicine, 9, 1998, p. 711–715.

    Article  CAS  Google Scholar 

  16. Ludwikowski B., Zhang Y.Y., Frey P., The long term culture of porcine urothelial cells and induction of urothelial stratification, BJU International, 84, 1999, p. 507–514.

    Article  CAS  Google Scholar 

  17. Miki H., Ando N., Ozawa S., Sato M., Hayashi K., Kitajima M., An artificial esophagus constructed of cultured human esophageal epithelial cells, fibroblasts, polyglycolic acid mesh, and collagen, ASAIO J., 45, 1999, p. 502–508.

    Article  CAS  Google Scholar 

  18. Goto Y., Noguchi Y., Nomura A., Sakamoto T., Ishii Y., Bitoh S., Picton C., Fujita Y., Watanabe T., Hasegawa S., Uchida Y., In vitro reconstitution of the tracheal epithelium, Am. J. Respir. Cell Mol. Biol., 20, 1999, p. 312–318.

    CAS  Google Scholar 

  19. Minuth W.W., Schumacher K., Strehl R., Kloth S., Physiological and cell biological aspects of perfusion culture technique employed to generate differentiated tissues for long term biomaterial testing and tissue engineering, J. Biomater. Sci. Polymer., 11,5, 2000, p. 495–522.

    Article  CAS  Google Scholar 

  20. Minuth W.W., Majer V., Kloth S., Dermietzel R., Growth of MDCK cells on non-transparent supports, In Vitro Cell Dev. Biol. Anim., 30, 1994, p. 12–14.

    Article  Google Scholar 

  21. Stockmann M., Gitter A.H., Sorgenfrei D., Fromm M., Schulzke J.D., Low edge damage container insert that adjusts intestinal forceps biopsies into Ussing chamber systems, Pflügers Arch., 438, 1999, p. 107–112.

    Article  CAS  Google Scholar 

  22. Schumacher K., Strehl R., Kloth S., Tauc M., Minuth W.W., The influence of culture media on embryonic collecting duct cell differentiation, In Vitro Cell Dev. Biol. Anim., 35, 1999, p. 465–471.

    Article  CAS  Google Scholar 

  23. Kloth S., Kobuch K., Domokos J., Wanke C., Monzer J., Polar application in an organotypic environment and under continuous medium flow: a new tissue-based test concept for a broad range of application in pharmacotoxicology, Toxicol. Vitr., 14,3, 2000, p. 265–274.

    Article  CAS  Google Scholar 

  24. Itoh T., Yamauchi A., Miyai A., Yokoyama K., Kamada T., Ueda N., Fujiwara Y., Mitogenactivated protein kinase and ist activator are regulated by hypertonic stress in Madin-Darby canine kidney cells, J. Clin. Invest., 93,6, 1994, p. 2387–2392.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer

About this chapter

Cite this chapter

Minuth, W., Schumacher, K., Strehl, R., de Vries, U. (2008). Mikroreaktortechnik für Tissue Engineering. In: Medizintechnik Life Science Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74925-7_17

Download citation

Publish with us

Policies and ethics