Skip to main content

Molecular Components of the Bacterial Cytoskeleton

  • Chapter
  • 2063 Accesses

It is only relatively recently that a prokaryotic cytoskeleton akin to that in eukaryotes has been identified, revealing a much higher order of cellular complexity than was previously thought. The proteins that form these bacterial cytoskeletal elements not only carry out similar roles to their eukaryotic counterparts, but they also have related protein folds, suggesting an ancient evolutionary relationship and the conservation of fundamental mechanisms. This chapter will introduce to the reader what is known at the molecular level regarding the proteins that comprise eubacterial and, in some cases, archaeal cytoskeletal elements.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abhayawardhane Y, Stewart GC (1995) Bacillus subtilis possesses a second determinant with extensive sequence similarity to the Escherichia coli mreB morphogene. J Bacteriol 177:765–773

    PubMed  CAS  Google Scholar 

  • Anderson DE, Gueiros-Filho FJ, Erickson HP (2004) Assembly dynamics of FtsZ rings in Bacillus subtilis and Escherichia coli and effects of FtsZ-regulating proteins. J Bacteriol 186:5775–5781

    Article  PubMed  CAS  Google Scholar 

  • Ausmees N, Kuhn JR, Jacobs-Wagner C (2003) The bacterial cytoskeleton: an intermediate filament-like function in cell shape. Cell 115:705–713

    Article  PubMed  CAS  Google Scholar 

  • Bazylinski DA, Frankel RB (2004) Magnetosome formation in prokaryotes. Nat Rev Microbiol 2:217–230

    Article  PubMed  CAS  Google Scholar 

  • Becker E, Herrera NC, Gunderson FQ, Derman AI, Dance AL, Larsen RA, Pogliano J (2006) DNA segregation by the bacterial actin AlfA during Bacillus subtilis growth and development. EMBO J 25:5919–5931

    Article  PubMed  CAS  Google Scholar 

  • Beck BD, Arscott PG, Jacobson A (1978) Novel properties of bacterial Elongation Factor Tu. Proc Natl Acad Sci USA 75: 1250–1254

    Article  PubMed  CAS  Google Scholar 

  • Beech P, Nheu T, Schultz T, Herbert S, Lithgow T, Gilson PR, McFadden GI (2000) Mitochondrial FtsZ in a chromophyte alga. Science 287:1276–1279

    Article  PubMed  CAS  Google Scholar 

  • Ben-Yehuda S, Losick R (2002) Asymmetric cell division in B. subtilis involves a spiral-like intermediate of the cytokinetic protein FtsZ. Cell 109:257–266

    Article  PubMed  CAS  Google Scholar 

  • Bermudes D, Hinkle G, Margulis L (1994) Do prokaryotes contain microtubules? Microbiol Rev 58:387–400

    PubMed  CAS  Google Scholar 

  • Bernhardt TG, de Boer PA (2005) SlmA, a nucleoid-associated, FtsZ binding protein required for blocking septal ring assembly over chromosomes in E. coli. Mol Cell 18:555–564

    Article  PubMed  CAS  Google Scholar 

  • Bi E, Lutkenhaus J (1990) Interaction between the min locus and ftsZ. J Bacteriol 172:5610–5616

    PubMed  CAS  Google Scholar 

  • Bi E, Lutkenhaus J (1991) FtsZ ring structure associated with division in Escherichia coli. Nature 354:161–164

    Article  PubMed  CAS  Google Scholar 

  • Bork P, Sander C, Valencia A (1992) An ATPase domain common to prokaryotic cell cycle proteins, sugar kinases, actin, and hsp70 heat shock proteins. Proc Natl Acad Sci USA 89:7290–7294

    Article  PubMed  CAS  Google Scholar 

  • Bramhill D, Thompson CM (1994) GTP-dependent polymerization of Escherichia coli FtsZ protein to form tubules. Proc Natl Acad Sci USA 91:5813–5817

    Article  PubMed  CAS  Google Scholar 

  • Briegel A, Dias DP, Li Z, Jensen RB, Frangakis AS, Jensen GJ (2006) Multiple large filament bundles observed in Caulobacter crescentus by electron cryotomography. Mol Microbiol 62:5–14

    Article  PubMed  CAS  Google Scholar 

  • Brown WJ, Rockey DD (2000) Identification of an antigen localized to an apparent septum within dividing Chlamydiae. Infect Immun 68:708–715

    Article  PubMed  CAS  Google Scholar 

  • Buddelmeijer N, Beckwith J (2004) A complex of the Escherichia coli cell division proteins FtsL, FtsB and FtsQ forms independently of its localization to the septal region. Mol Microbiol 52:1315–1327

    Article  PubMed  CAS  Google Scholar 

  • Carballido-Lopez R, Errington J (2003) The bacterial cytoskeleton: in vivo dynamics of the actin-like protein Mbl of Bacillus subtilis. Dev Cell 4:19–28

    Article  PubMed  CAS  Google Scholar 

  • Cordell SC, Robinson EJ, Löwe J (2003) Crystal structure of the SOS cell division inhibitor SulA and in complex with FtsZ. Proc Natl Acad Sci USA 100:7889–7894

    Article  PubMed  CAS  Google Scholar 

  • Daniel R, Errington J (2000) Intrinsic instability of the essential cell division protein FtsL of Bacillus subtilis and a role for DivIB protein in FtsL turnover. Mol Microbiol 36:278–289

    Article  PubMed  CAS  Google Scholar 

  • Daniel RA, Errington J (2003) Control of cell morphogenesis in bacteria: two distinct ways to make a rod-shaped cell. Cell 113:767–776

    Article  PubMed  CAS  Google Scholar 

  • Daniel RA, Harry EJ, Katis VL, Wake RG, Errington J (1998) Characterization of the essential cell division gene ftsL (yllD) of Bacillus subtilis and its role in the assembly of the division apparatus. Mol Microbiol 29:593–604

    Article  PubMed  CAS  Google Scholar 

  • de Boer PAJ, Crossley RE, Rothfield LI (1989) A division inhibitor and a topological specificity factor coded for by the minicell locus determine proper placement of the division septum in E. coli. Cell 56:641–649

    PubMed  Google Scholar 

  • de Boer PAJ, Crossley RE, Rothfield LI (1990) Central role for the Escherichia coli minC gene product in two different cell division-inhibition systems. Proc Natl Acad Sci USA 87:1129–1133

    Article  PubMed  Google Scholar 

  • de Pereda JM, Leynadier D, Evangelio JA, Chacon P, Andreu JM (1996) Tubulin secondary structure analysis, limited proteolysis sites, and homology to FtsZ. Biochem 35:14203–14215

    Article  Google Scholar 

  • Defeu Soufo HJ, Graumann PL (2006) Dynamic localization and interaction with other Bacillus subtilis actin-like proteins are important for the function of MreB. Mol Microbiol 62:1340–1356

    Article  PubMed  CAS  Google Scholar 

  • Desai A, Mitchison TJ (1997) Microtubule polymerization dynamics. Annu Rev Cell Dev Biol 13:83–117

    Article  PubMed  CAS  Google Scholar 

  • Erickson HP, Taylor DW, Taylor KA, Bramhill D (1996) Bacterial cell division protein FtsZ assembles into protofilament sheets and minirings, structural homologs of tubulin polymers. Proc Natl Acad Sci USA 93:519–523

    Article  PubMed  CAS  Google Scholar 

  • Esue O, Cordero M, Wirtz D, Tseng Y (2005) The assembly of MreB, a prokaryotic homolog of actin. J Biol Chem 280:2628–2635

    Article  PubMed  CAS  Google Scholar 

  • Feucht A, Lucet I, Yudkin MD, Errington J (2001) Cytological and biochemical characterization of the FtsA cell division protein of Bacillus subtilis. Mol Microbiol 40:115–125

    Article  PubMed  CAS  Google Scholar 

  • Figge RM, Divakaruni AV, Gober JW (2004) MreB, the cell shape-determining bacterial actin homologue, co-ordinates cell wall morphogenesis in Caulobacter crescentus. Mol Microbiol 51:1321–1332

    Article  PubMed  CAS  Google Scholar 

  • Formstone A, Errington J (2005) A magnesium-dependent mreB null mutant: implications for the role of mreB in Bacillus subtilis. Mol Microbiol 55:1646–1657

    Article  PubMed  CAS  Google Scholar 

  • Fu X, Shih Y-L, Zhang Y, Rothfield LI (2001) The MinE ring required for proper placement of the division site is a mobile structure that changes its cellular location during the Escherichia coli division cycle. Proc Natl Acad Sci USA 98:980–985

    Article  PubMed  CAS  Google Scholar 

  • Garner EC, Campbell CS, Mullins RD (2004) Dynamic instability in a DNA-segregating prokaryotic actin homolog. Science 306:1021–1025

    Article  PubMed  CAS  Google Scholar 

  • Garner EC, Campbell CS, Weibel DB, Mullins RD (2007) Reconstitution of DNA segregation driven by assembly of a prokaryotic actin homolog. Science 315:1270–1274

    Article  PubMed  CAS  Google Scholar 

  • Gayda RC, Henk MC, Leong D (1992) C-shaped cells caused by expression of an ftsA mutation in Escherichia coli. J Bacteriol 174:5362–5370

    PubMed  CAS  Google Scholar 

  • Gitai Z, Dye N, Shapiro L (2004) An actin-like gene can determine cell polarity in bacteria. Proc Natl Acad Sci USA 101:8643–8648

    Article  PubMed  CAS  Google Scholar 

  • Gitai Z, Dye NA, Reisenauer A, Wachi M, Shapiro L (2005) MreB actin-mediated segregation of a specific region of a bacterial chromosome. Cell 120:329–341

    Article  PubMed  CAS  Google Scholar 

  • Glass JI, Lefkowitz EJ, Glass JS, Heiner CR, Chen EY, Cassell GH (2000) The complete sequence of the mucosal pathogen Ureaplasma urealyticum. Nature 407:757–762

    Article  PubMed  CAS  Google Scholar 

  • Glockner FO, Kube M, Bauer M, Teeling H, Lombardot T, Ludwig W, Gade D, Beck A, Borzym K, Heitmann K, Rabus R, Schlesner H, Amann R, Reinhardt R (2003) Complete genome sequence of the marine planctomycete Pirellula sp. strain 1. Proc Natl Acad Sci USA 100:8298–8303

    Article  PubMed  CAS  Google Scholar 

  • Grantcharova N, Lustig U, Flardh K (2005) Dynamics of FtsZ assembly during sporulation in Streptomyces coelicolor A3(2). J Bacteriol 187:3227–3237

    Article  PubMed  CAS  Google Scholar 

  • Gueiros-Filho FJ, Losick R (2002) A widely conserved bacterial cell division protein that promotes assembly of the tubulin-like protein FtsZ. Genes Dev 16:2544–2556

    Article  PubMed  CAS  Google Scholar 

  • Hale CA, Meinhardt H, de Boer PA (2001) Dynamic localization cycle of the cell division regulator MinE in Escherichia coli. EMBO J 20:1563–1572

    Article  PubMed  CAS  Google Scholar 

  • Harry E, Monahan L, Thompson L (2006) Bacterial cell division: the mechanism and its precison. Int Rev Cytol 253:27–94

    Article  PubMed  CAS  Google Scholar 

  • Helfand BT, Chang L, Goldman RD (2004) Intermediate filaments are dynamic and motile elements of cellular architecture. J Cell Sci 117:133–141

    Article  PubMed  CAS  Google Scholar 

  • Hixon WG, Searcy DG (1993) Cytoskeleton in the archaebacterium Thermoplasma acidophilum? Viscosity increase in soluble extracts. Biosystems 29:151–160

    Article  PubMed  CAS  Google Scholar 

  • Holmes KC, Popp D, Gebhard W, Kabsch W (1990) Atomic model of the actin filament. Nature 347:44–49

    Article  PubMed  CAS  Google Scholar 

  • Hu B, Yang G, Zhao W, Zhang Y, Zhao J MreB is important for cell shape but not for chromosome segregation of the filamentous cyanobacterium Anabaena sp. PCC 7120. Mol Microbiol 63: 1640–1652

    Google Scholar 

  • Hu Z, Gogol E, Lutkenhaus J (2002) Dynamic assembly of MinD on phospholipid vesicles regulated by ATP and MinE. Proc Natl Acad Sci USA 99:6761–6766

    Article  PubMed  CAS  Google Scholar 

  • Hu Z, Lutkenhaus J (1999) Topological regulation of cell division in Escherichia coli involves rapid pole to pole oscillation of the division inhibitor MinC under the control of MinD and MinE. Mol Microbiol 34:82–90

    Article  PubMed  CAS  Google Scholar 

  • Hu Z, Mukherjee A, Pichoff S, Lutkenhaus J (1999) The MinC component of the division site selection system in Escherichia coli interacts with FtsZ to prevent polymerization. Proc Natl Acad Sci USA 96:14819–14824

    Article  PubMed  CAS  Google Scholar 

  • Iwai N, Nagai K, Wachi M (2002) Novel S-benzylisothiourea compound that induces spherical cells in Escherichia coli probably by acting on a rod-shape-determining protein(s) other than penicillin-binding protein 2. Biosci Biotechnol Biochem 66:2658–266I

    Article  PubMed  CAS  Google Scholar 

  • Izard J, Samsonoff WA, Kinoshita MB, Limberger RJ (1999) Genetic and structural analyses of cytoplasmic filaments of wild-type Treponema phagedenis and a flagellar filament-deficient mutant. J Bacteriol 181:6739–6746

    PubMed  CAS  Google Scholar 

  • Jenkins C, Samudrala R, Anderson I, Hedlund BP, Petroni G, Michailova N, Pinel N, Overbeek R, Rosati G, Staley JT (2002) Genes for the cytoskeletal protein tubulin in the bacterial genus Prosthecobacter. Proc Natl Acad Sci USA 99:17049–17054

    Article  PubMed  CAS  Google Scholar 

  • Jensen RB, Gerdes K (1997) Partitioning of plasmid R1. The ParM protein exhibits ATPase activity and interacts with the centromere-like ParR-parC complex. J Mol Biol 269:505–513

    Article  PubMed  CAS  Google Scholar 

  • Jensen RB, Gerdes K (1999) Mechanism of DNA segregation in prokaryotes: ParM partitioning protein of plasmid R1 co-localizes with its replicon during the cell cycle. EMBO J 18:4076–4084

    Article  PubMed  CAS  Google Scholar 

  • Jones LJ, Carballido-Lopez R, Errington J (2001) Control of cell shape in bacteria: helical, actin-like filaments in Bacillus subtilis. Cell 104:913–922

    Article  PubMed  CAS  Google Scholar 

  • Kawarabayasi Y, Hino Y, Horikawa H, Yamazaki S, Haikawa Y, Jin-no K, Takahashi M, Sekine M, Baba S, Anka A, Kosugi H, Hosoyama A, Fukui S, Nagai Y, Nishijima K, Nakazawa H, Takamiya M, Masuda S, Funahashi T, Tanaka T, Kudoh Y, Yamazaki J, Kushida N, Oguchi A, Kikuchi H (1999) Complete genome sequence of an aerobic hyper-thermophilic crenarchaeon, Aeropyrum pernix K1. DNA Res 6:83–101

    Article  PubMed  CAS  Google Scholar 

  • Kenny CH, Ding W, Kelleher K, Benard S, Dushin EG, Sutherland AG, Mosyak L, Kriz R, Ellestad G (2003) Development of a fluorescence polarization assay to screen for inhibitors of the FtsZ/ZipA interaction. Anal Biochem 323:224–233

    Article  PubMed  CAS  Google Scholar 

  • Kim SY, Gitai Z, Kinkhabwala A, Shapiro L, Moerner WE (2006) Single molecules of the bacterial actin MreB undergo directed treadmilling motion in Caulobacter crescentus. Proc Natl Acad Sci USA 103:10929–10934

    Article  PubMed  CAS  Google Scholar 

  • Komeili A, Li Z, Newman DK, Jensen GJ (2006) Magnetosomes are cell membrane invaginations organized by the actin-like protein MamK. Science 311:242–245

    Article  PubMed  CAS  Google Scholar 

  • Korn ED, Carlier MF, Pantaloni D (1987) Actin polymerization and ATP hydrolysis. Science 238:638–644

    Article  PubMed  CAS  Google Scholar 

  • Kruse T, Blagoev B, Lobner-Olesen A, Wachi M, Sasaki K, Iwai N, Mann M, Gerdes K (2006) Actin homolog MreB and RNA polymerase interact and are both required for chromosome segregation in Escherichia coli. Genes Dev 20:113–124

    Article  PubMed  CAS  Google Scholar 

  • Kruse T, Bork-Jensen J, Gerdes K (2005) The morphogenetic MreBCD proteins of Escherichia coli form an essential membrane-bound complex. Mol Microbiol 55:78–89

    Article  PubMed  CAS  Google Scholar 

  • Lara B, Rico AI, Petruzzelli S, Santona A, Dumas J, Biton J, Vicente M, Mingorance J, Massidda O (2005) Cell division in cocci: localization and properties of the Streptococcus pneumoniae FtsA protein. Mol Microbiol 55:699–711

    Article  PubMed  CAS  Google Scholar 

  • Leonard TA, Butler PJ, Löwe J (2005) Bacterial chromosome segregation: structure and DNA binding of the Soj dimer—a conserved biological switch. EMBO J 24:270–282

    Article  PubMed  CAS  Google Scholar 

  • Leonard TA, Butler PJG, Löwe J (2004) Structural analysis of the chromosome segregation protein Spo0J from Thermus thermophilus. Mol Microbiol 53:419–432

    Article  PubMed  CAS  Google Scholar 

  • Levin PA, Kurtser IG, Grossman AD (1999) Identification and characterization of a negative regulator of FtsZ ring formation in Bacillus subtilis. Proc Natl Acad Sci USA 96:9642–9647

    Article  PubMed  CAS  Google Scholar 

  • Liu G, Draper GC, Donachie WD (1998) FtsK is a bifunctional protein involved in cell division and chromosome localization in Escherichia coli. Mol Microbiol 29:893–903

    Article  PubMed  CAS  Google Scholar 

  • Low HH, Löwe J (2006) A bacterial dynamin-like protein. Nature 444:766–769

    Article  PubMed  CAS  Google Scholar 

  • Löwe J, Amos LA (1998) Crystal structure of the bacterial cell-division protein FtsZ. Nature 391:203–206

    Article  PubMed  Google Scholar 

  • Löwe J, Amos LA (1999) Tubulin-like protofilaments in Ca2+-induced FtsZ sheets. EMBO J 18:2364–2371

    Article  PubMed  Google Scholar 

  • Löwe J, Amos LA (2000) Helical tubes of FtsZ from Methanococcus jannaschii. Biol Chem 381:993–999

    Article  PubMed  Google Scholar 

  • Löwe J, van den Ent F, Amos LA (2004) Molecules of the bacterial cytoskeleton. Annu Rev Biophys Biomol Struct 33:177–198

    Article  PubMed  CAS  Google Scholar 

  • Lu C, Reedy M, Erickson HP (2000) Straight and curved conformations of FtsZ are regulated by GTP hydrolysis. J Bacteriol 182:164–170

    Article  PubMed  CAS  Google Scholar 

  • Lu C, Stricker J, Erickson HP (1998) FtsZ from Escherichia coli, Azotobacter vinelandii, and Thermotoga maritima—quantitation, GTP hydrolysis, and assembly. Cell Motil Cytoskel 40:71–86

    Article  CAS  Google Scholar 

  • Lu C, Stricker J, Erickson HP (2001) Site-specific mutations of FtsZ – effects on GTPase and in vitro assembly. BMC Microbiol 1:7 doi:10.1186/1471–2180-1–7

    Article  PubMed  CAS  Google Scholar 

  • Lucic V, Förster F, Baumeister W (2005) Structural studies by electron tomography: from cells to molecules. Annu Rev Biochem 74:833–865

    Article  PubMed  CAS  Google Scholar 

  • Lutkenhaus J (2007) Assembly dynamics of the bacterial MinCDE system and spatial regulation of the Z ring. Annu Rev Biochem 76:539–562

    Article  PubMed  CAS  Google Scholar 

  • Margalit DN, Romberg L, Mets RB, Hebert AM, Mitchison TJ, Kirschner MW, RayChaudhuri D (2004) Targeting cell division: Small-molecule inhibitors of FtsZ GTPase perturb cytokinetic ring assembly and induce bacterial lethality. Proc Natl Acad Sci USA 101:11821–11826

    Article  PubMed  CAS  Google Scholar 

  • Margolin W (2005) FtsZ and the division of prokaryotic cells and organelles. Nat Rev Mol Cell Biol 6:862–871

    Article  PubMed  CAS  Google Scholar 

  • Marston A, Errington J (1999) Dynamic movement of the ParA-like soj protein of B. subtilis and its dual role in nucleoid organization and developmental regulation. Mol Cell 5:673–682

    Article  Google Scholar 

  • Marston AL, Thomaides HB, Edwards DH, Sharpe ME, Errington J (1998) Polar localization of the MinD protein of Bacillus subtilis and its role in selection of the mid-cell division site. Genes Dev 12:3419–3430

    Article  PubMed  CAS  Google Scholar 

  • Mayer F (2006) Cytoskeletal elements in bacteria Mycoplasma pneumoniae, Thermoanaero bacterium sp., and Escherichia coli as revealed by electron microscopy. J Mol Microbiol Biotechnol 11:228–243

    Article  PubMed  CAS  Google Scholar 

  • Michie KA, Monahan LG, Beech PL, Harry EJ (2006) Trapping of a spiral-like intermediate of the bacterial cytokinetic protein FtsZ. J Bacteriol 188:1680–1690

    Article  PubMed  CAS  Google Scholar 

  • Mingorance J, Tadros M, Vicente M, Gonzalez JM, Rivas G, Velez M (2005) Visualization of single Escherichia coli Ftsz filament dynamics with atomic force microscopy. J Biol Chem 280:20909–20914

    Article  PubMed  CAS  Google Scholar 

  • Møller-Jensen J, Borch J, Dam M, Jensen RB, Roepstorff P, Gerdes K (2003) Bacterial mitosis: ParM of plasmid R1 moves plasmid DNA by an actin-like insertional polymerization mechanism. Mol Cell 12:1477–1487

    Article  PubMed  Google Scholar 

  • Møller-Jensen J, Jensen RB, Löwe J, Gerdes K (2002) Prokaryotic DNA segregation by an actin-like filament. EMBO J 21:3119–3127

    Article  PubMed  Google Scholar 

  • Møller-Jensen J, Löwe J (2005) Increasing complexity of the bacterial cytoskeleton. Curr Opin Cell Biol 17:75–81

    Article  PubMed  CAS  Google Scholar 

  • Mukherjee A, Dai K, Lutkenhaus J (1993) Escherichia coli cell division protein FtsZ is a guanine nucleotide binding protein. Proc Natl Acad Sci USA 90:1053–1057

    Article  PubMed  CAS  Google Scholar 

  • Mukherjee A, Lutkenhaus J (1994) Guanine nucleotide-dependent assembly of FtsZ into filaments. J Bacteriol 176:2754–2758

    PubMed  CAS  Google Scholar 

  • Mukherjee A, Lutkenhaus J (1998) Dynamic assembly of FtsZ regulated by GTP hydrolysis. EMBO J 17:462–469

    Article  PubMed  CAS  Google Scholar 

  • Nanninga N (1998) Morphogenesis of Escherichia coli. Microbiol Mol Biol Rev 62:110–129

    PubMed  CAS  Google Scholar 

  • Nogales E, Downing KH, Amos LA, Löwe J (1998a) Tubulin and FtsZ form a distinct family of GTPases. Nat Struc Biol 5:451–458

    Article  CAS  Google Scholar 

  • Nogales E, Wolf SG, Downing KH (1998b) Structure of the ab tubulin dimer by electron crystallography. Nature 391:199–203

    Article  PubMed  CAS  Google Scholar 

  • Oliva MA, Cordell SC, Löwe J (2004) Structural insights into FtsZ protofilament formation. Nat Struc Mol Biol 11:1243–1250

    Article  CAS  Google Scholar 

  • Oliva MA, Huecas S, Palacios JM, Martin-Benito J, Valpuesta JM, Andreu JM (2003) Assembly of archaeal cell division protein FtsZ and a GTPase-inactive mutant into double-stranded filaments. J Biol Chem 278:33562–33570

    Article  PubMed  CAS  Google Scholar 

  • Osteryoung KW, McAndrew RS (2001) The plastid division machine. Annu Rev Plant Physiol Plant Mol Biol 52:315–333

    Article  PubMed  CAS  Google Scholar 

  • Osteryoung KW, Vierling E (1995) Conserved cell and organelle division. Nature 376:473–474

    Article  PubMed  CAS  Google Scholar 

  • Paradis-Bleau C, Sanschagrin F, Levesque RC (2004) Identification of Pseudomonas aeruginosa FtsZ peptide inhibitors as a tool for development of novel antimicrobials. J Antimicrob Chemother 54:278–280

    Article  PubMed  CAS  Google Scholar 

  • Paradis-Bleau C, Sanschagrin F, Levesque RC (2005) Peptide inhibitors of the essential cell division protein FtsA. Prot Eng Design Select 18:85–91

    Article  CAS  Google Scholar 

  • Phoenix P, Drapeau GR (1988) Cell division control in Escherichia coli K-12: some properties of the ftsZ84 mutation and suppression of this mutation by the product of a newly identified gene. J Bacteriol 170:4338–4342

    PubMed  CAS  Google Scholar 

  • Pichoff S, Lutkenhaus J (2005) Tethering the Z ring to the membrane through a conserved membrane targeting sequence in FtsA. Mol Microbiol 55:1722–1734

    Article  PubMed  CAS  Google Scholar 

  • Pradel N, Santini C-L, Bernadac A, Fukumori Y, Wu L-F (2006) Biogenesis of actin-like bacterial cytoskeletal filaments destined for positioning prokaryotic magnetic organelles. Proc Natl Acad Sci USA 103:17485–17489

    Article  PubMed  CAS  Google Scholar 

  • Radnedge L, Davis MA, Austin SJ (1996) P1 and P7 plasmid partition: ParB protein bound to its partition site makes a separate discriminator contact with the DNA that determines species specificity. EMBO J 15:1155–1162

    PubMed  CAS  Google Scholar 

  • Radnedge L, Youngren B, Davis M, Austin S (1998) Probing the structure of complex macromolecular interactions by homolog specificity scanning: the P1 and P7 plasmid partition systems. EMBO J 17:6076–6085

    Article  PubMed  CAS  Google Scholar 

  • Raskin DM, de Boer PA (1999) Rapid pole-to-pole oscillation of a protein required for directing division to the middle of Escherichia coli. Proc Natl Acad Sci USA 96:4971–4976

    Article  PubMed  CAS  Google Scholar 

  • Read TD, Brunham RC, Shen C, Gill SR, Heidelberg JF, White O, Hickey EK, Peterson J, Utterback T, Berry K, Bass S, Linher K, Weidman J, Khouri H, Craven B, Bowman C, Dodson R, Gwinn M, Nelson W, DeBoy R, Kolonay J, McClarty G, Salzberg SL, Eisen J, Fraser CM (2000) Genome sequences of Chlamydia trachomatis MoPn and Chlamydia pneumoniae AR39 Nucl Acids Res 28:1397–1406

    Article  CAS  Google Scholar 

  • Robson SA, Michie KA, Mackay JP, Harry EJ, King GF (2002) The Bacillus subtilis cell division proteins FtsL and DivIC are intrinsically unstable and do not interact with one another in the absence of other septasomal components. Mol Microbiol 44:663–674

    Article  PubMed  CAS  Google Scholar 

  • Roeben A, Kofler C, Nagy I, Nickell S, Hartl FU, Bracher A (2006) Crystal structure of an archaeal actin homolog. J Mol Biol 358:145–156

    Article  PubMed  CAS  Google Scholar 

  • Rothfield L, Justice S, Garcia-Lara J (1999) Bacterial cell division. Annu Rev Genet 33:423–448

    Article  PubMed  CAS  Google Scholar 

  • Rueda S, Vicente M, Mingorance J (2003) Concentration and assembly of the division ring proteins FtsZ, FtsA, and ZipA during the Escherichia coli cell cycle. J Bacteriol 185:3344

    Article  PubMed  CAS  Google Scholar 

  • Scheffel A, Gruska M, Faivre D, Linaroudis A, Plitzko JrM, Schüler D (2006) An acidic protein aligns magnetosomes along a filamentous structure in magnetotactic bacteria. Nature 440:110–114

    Article  PubMed  CAS  Google Scholar 

  • Scheffers DJ, Driessen AJ (2002) Immediate GTP hydrolysis upon FtsZ polymerization. Mol Microbiol 43:1517–1521

    Article  PubMed  CAS  Google Scholar 

  • Schilstra MJ, Slot JW, van der Meide PH, Posthuma G, Cremers AF, Bosch L (1984) Immunocytochemical localization of the elongation factor Tu in E. coli cells. FEBS Lett 165(2):175–179

    Article  PubMed  CAS  Google Scholar 

  • Schlieper D, Oliva MA, Andreu JM, Löwe J (2005) Structure of bacterial tubulin BtubA/B: Evidence for horizontal gene transfer. Proc Natl Acad Sci USA 102: 9170–9175

    Article  PubMed  CAS  Google Scholar 

  • Schmidt A, Hall MN (1998) Signaling to the actin cytoskeleton. Ann Rev Cell Dev Biol 14:305–338

    Article  CAS  Google Scholar 

  • Scholle MD, White CA, Kunnimalaiyaan M, Vary PS (2003) Sequencing and characterization of pBM400 from Bacillus megaterium QM B1551. Appl Environ Microbiol 69:6888–6898

    Article  PubMed  CAS  Google Scholar 

  • Shih Y-L, Fu X, King GF, Le T, Rothfield L (2002) Division site placement in E. coli: mutations that prevent formation of the MinE ring lead to loss of the normal midcell arrest of growth of polar MinD membrane domains. EMBO J 21:3347–3357

    Article  PubMed  CAS  Google Scholar 

  • Shih Y-L, Rothfield L (2006) The bacterial cytoskeleton. Microbiol Mol Biol Rev 70:729–754

    Article  PubMed  CAS  Google Scholar 

  • Shih YL, Le T, Rothfield L (2003) Division site selection in Escherichia coli involves dynamic redistribution of Min proteins within coiled structures that extend between the two cell poles. Proc Natl Acad Sci USA 100:7865–7870

    Article  PubMed  CAS  Google Scholar 

  • Soufo HJ, Graumann PL (2003) Actin-like proteins MreB and Mbl from Bacillus subtilis are required for bipolar positioning of replication origins. Curr Biol 28;1916–1920

    Article  CAS  Google Scholar 

  • Stephens RS, Kalman S, Lammel C, Fan J, Marathe R, Aravind L, Mitchell W, Olinger L, Tatusov RL, Zhao Q, Koonin EV, Davis RW (1998) Genome sequence of an obligate intracellular pathogen of humans: Chlamydia trachomatis. Science 282:754–759

    Article  PubMed  CAS  Google Scholar 

  • Stokes NR, Sievers J, Barker S, Bennett JM, Brown DR, Collins I, Errington VM, Foulger D, Hall M, Halsey R, Johnson H, Rose V, Thomaides HB, Haydon DJ, Czaplewski LG, Errington J (2005) Novel inhibitors of bacterial cytokinesis identified by a cell-based antibiotic screening assay. J Biol Chem 280:39709–39715S

    Article  PubMed  CAS  Google Scholar 

  • Stricker J, Maddox P, Salmon ED, Erickson HP (2002) Rapid assembly dynamics of the Escherichia coli FtsZ-ring demonstrated by fluorescence recovery after photobleaching. Proc Natl Acad Sci USA 99:3171–3175

    Article  PubMed  CAS  Google Scholar 

  • Sutherland AG, Alvarez J, Ding W, Foreman KW, Kenny CH, Labthavikul P, Mosyak L, Petersen PJ, Rush TS 3rd, Ruzin A, Tsao D, Wheless KL (2003) Structure-based design of carboxybiphenylindole inhibitors of the ZipA-FtsZ interaction. Org Biomol Chem 1:4138–4140

    Article  PubMed  CAS  Google Scholar 

  • Tang M, Bideshi DK, Park H-W, Federici BA (2006) Minireplicon from pBtoxis of Bacillus thuringiensis subsp. israelensis. Appl Environ Microbiol 72:6948–6954

    Article  PubMed  CAS  Google Scholar 

  • Thanbichler M, Shapiro L (2006a) Chromosome organization and segregation in bacteria. J Struct Biol 156:292–303

    Article  PubMed  CAS  Google Scholar 

  • Thanbichler M, Shapiro L (2006b) MipZ, a spatial regulator coordinating chromosome segregation with cell division in Caulobacter. Cell 126:147–162

    Article  PubMed  CAS  Google Scholar 

  • Thanedar S, Margolin W (2004) FtsZ exhibits rapid movement and oscillation waves in helix-like patterns in Escherichia coli. Curr Biol 14:1167–1173

    Article  PubMed  CAS  Google Scholar 

  • Tinsley E, Khan SA (2006) A novel FtsZ-like protein is involved in replication of the anthrax toxin-encoding pXO1 plasmid in Bacillus anthracis. J Bacteriol 188:2829–2835

    Article  PubMed  CAS  Google Scholar 

  • Tiyanont K, Doan T, Lazarus MB, Fang X, Rudner DZ, Walker S (2006) Imaging peptidoglycan biosynthesis in Bacillus subtilis with fluorescent antibiotics. Proc Nat Acad Sci USA 103:11033–11038

    Article  PubMed  CAS  Google Scholar 

  • van den Ent F, Amos LA, Löwe J (2001) Prokaryotic origin of the actin cytoskeleton. Nature 413:39–44

    Article  PubMed  CAS  Google Scholar 

  • van den Ent F, Møller-Jensen J, Amos LA, Gerdes K, Löwe J (2002) F-actin-like filaments formed by plasmid segregation protein ParM. EMBO J 21:6935–6943

    Article  PubMed  Google Scholar 

  • Varley AW, Stewart GC (1992) The divIVB region of the Bacillus subtilis chromosome encodes homologs of Escherichia coli septum placement (MinCD) and cell shape (MreBCD) determinants. J Bacteriol 174:6729–6742

    PubMed  CAS  Google Scholar 

  • Vaughan S, Wickstead B, Gull K, Addinall SG (2004) Molecular evolution of FtsZ protein sequences encoded within the genomes of archaea, bacteria, and eukaryota. J Mol Evol 58:19–29

    Article  PubMed  CAS  Google Scholar 

  • Vitha S, McAndrew RS, Osteryoung KW (2001) FtsZ ring formation at the chloroplast division site in plants. J Cell Biol 153:111–120

    Article  PubMed  CAS  Google Scholar 

  • Vollmer W (2006) The prokaryotic cytoskeleton: a putative target for inhibitors and antibiotics? Appl Microbiol Biotechnol 73:37–47

    Article  PubMed  CAS  Google Scholar 

  • White EL, Suling WJ, Ross LJ, Seitz LE, Reynolds RC (2002) 2-Alkoxycarbonylaminopyridines: inhibitors of Mycobacterium tuberculosis FtsZ. J Antimicrob Chemother 50:111–114

    Article  PubMed  CAS  Google Scholar 

  • Wu LJ, Errington J (2004) Coordination of cell division and chromosome segregation by a nucleoid occlusion protein in Bacillus subtilis. Cell 117:915–925

    Article  PubMed  CAS  Google Scholar 

  • Yanouri A, Daniel RA, Errington J, Buchanan CE (1993) Cloning and sequencing of the cell division gene pbpB, which encodes penicillin-binding protein 2B in Bacillus subtilis. J Bacteriol 175:7604–7616

    PubMed  CAS  Google Scholar 

  • Young KD (2006) The selective value of bacterial shape. Microbiol Mol Biol Rev 70:660–703

    Article  PubMed  Google Scholar 

  • Yu XC, Margolin W (1997) Ca2+-mediated GTP-dependent dynamic assembly of bacterial cell division protein FtsZ into asters and polymer networks in vitro. EMBO J 16:5455–5463

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Michie, K.A. (2008). Molecular Components of the Bacterial Cytoskeleton. In: El-Sharoud, W. (eds) Bacterial Physiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74921-9_2

Download citation

Publish with us

Policies and ethics