Skip to main content

Logical Refinements of Church’s Problem

  • Conference paper
Book cover Computer Science Logic (CSL 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4646))

Included in the following conference series:

Abstract

Church’s Problem (1962) asks for the construction of a procedure which, given a logical specification ϕ on sequence pairs, realizes for any input sequence X an output sequence Y such that (X,Y) satisfies ϕ. Büchi and Landweber (1969) gave a solution for MSO specifications in terms of finite-state automata. We address the problem in a more general logical setting where not only the specification but also the solution is presented in a logical system. Extending the result of Büchi and Landweber, we present several logics \({\cal L}\) such that Church’s Problem with respect to \({\cal L}\) has also a solution in \({\cal L}\), and we discuss some perspectives of this approach.

This paper was written during a visit of the first author in Aachen in February 2007, funded by the European Science Foundation ESF in the Research Networking Programme AutoMathA (Automata: From Mathematics to Applications).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Büchi, J.R., Landweber, L.H.: Solving sequential conditions by finite-state strategies. Trans. Amer. Math. Soc. 138, 367–378 (1969)

    Article  Google Scholar 

  2. Büchi, J.R., Elgot, C.C., Wright, J.B.: The nonexistence of certain algorithms of finite automata theory. Notices of the AMS 5, 98 (1958)

    Google Scholar 

  3. Church, A.: Logic, arithmetic, and automata. In: Proc. Int. Congr. Math. 1962, Inst. Mittag-Lefler, Djursholm, Sweden, pp. 23–35 (1963)

    Google Scholar 

  4. Dziembowski, S., Jurdziński, M., Walukiewicz, I.: How much memory is needed to win infinite games? In: Proc. 12th LICS, pp. 99–110 (1997)

    Google Scholar 

  5. Ebbinghaus, H.D., Flum, J.: Finite Model Theory. Springer, Heidelberg (1995)

    MATH  Google Scholar 

  6. Grädel, E., Thomas, W., Wilke, T. (eds.): Automata, Logics, and Infinite Games. LNCS, vol. 2500. Springer, Heidelberg (2002)

    MATH  Google Scholar 

  7. Gurevich, Y., Harrington, L.: Trees, automata, and games. In: Proc. 14th STOC, pp. 60–65. ACM Press, New York (1982)

    Google Scholar 

  8. Gurevich, Y.: Monadic second order theories. In: Barwise, J., Feferman, S. (eds.) Model Theoretic Logics, pp. 479–506. Springer, Heidelberg (1986)

    Google Scholar 

  9. Kupferman, O., Vardi, M.Y.: On Bounded Specifications. In: Nieuwenhuis, R., Voronkov, A. (eds.) LPAR 2001. LNCS (LNAI), vol. 2250, pp. 24–38. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  10. Moschovakis, Y.: Descriptive Set Theory. North-Holland, Amsterdam (1980)

    MATH  Google Scholar 

  11. Perrin, D., Pin, J.E.: Infinite Words. Elsevier, Amsterdam (2004)

    MATH  Google Scholar 

  12. Pin, J.E.: Varieties of Formal Languages. North Oxford and Pergamon, Oxford (1986)

    MATH  Google Scholar 

  13. Putnam, H.: Decidability and essential undecidability. JSL 22, 39–54 (1957)

    Article  MATH  MathSciNet  Google Scholar 

  14. Rabinovich, A.: Church Synthesis Problem with Parameters. In: Ésik, Z. (ed.) CSL 2006. LNCS, vol. 4207, pp. 546–561. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  15. Selivanov, V.: Fine hierarchy of regular aperiodic ú- languages. In: Harju, T., et al. (eds.) DLT 2007. LNCS, vol. 4588, Springer, Heidelberg (2007)

    Google Scholar 

  16. Shelah, S.: The monadic theory of order. Ann. of Math. 102, 349–419 (1975)

    Article  Google Scholar 

  17. Straubing, H.: Finite Automata, Formal Logic, and Circuit Complexity, Birkhäuser, Boston (1994)

    Google Scholar 

  18. Thomas, W.: A combinatorial approach to the theory of ω-automata. Inf. Contr. 48, 261–283 (1981)

    Article  MATH  Google Scholar 

  19. Thomas, W.: On the synthesis of strategies in infinite games. In: Mayr, E.W., Puech, C. (eds.) STACS 1995. LNCS, vol. 900, pp. 1–13. Springer, Heidelberg (1995)

    Google Scholar 

  20. Thomas, W.: Languages, automata, and logic. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages, vol. 3, pp. 389–455. Springer, Heidelberg (1997)

    Google Scholar 

  21. Thomas, W.: Complementation of Büchi automata revisited. In: Contributions on Theoretical Computer Science in Honor of Arto Salomaa, pp. 109–120. Springer, Heidelberg (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Jacques Duparc Thomas A. Henzinger

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rabinovich, A., Thomas, W. (2007). Logical Refinements of Church’s Problem. In: Duparc, J., Henzinger, T.A. (eds) Computer Science Logic. CSL 2007. Lecture Notes in Computer Science, vol 4646. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74915-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74915-8_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74914-1

  • Online ISBN: 978-3-540-74915-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics