Skip to main content

Unbounded Proof-Length Speed-Up in Deduction Modulo

  • Conference paper
Computer Science Logic (CSL 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4646))

Included in the following conference series:

Abstract

In 1973, Parikh proved a speed-up theorem conjectured by Gödel 37 years before: there exist arithmetical formulæ that are provable in first order arithmetic, but whose shorter proof in second order arithmetic is arbitrarily smaller than any proof in first order. On the other hand, resolution for higher order logic can be simulated step by step in a first order narrowing and resolution method based on deduction modulo, whose paradigm is to separate deduction and computation to make proofs clearer and shorter.

We prove that i + 1-th order arithmetic can be linearly simulated into i-th order arithmetic modulo some confluent and terminating rewrite system. We also show that there exists a speed-up between i-th order arithmetic modulo this system and i-th order arithmetic without modulo. All this allows us to prove that the speed-up conjectured by Gödel does not come from the deductive part of the proofs, but can be expressed as simple computation, therefore justifying the use of deduction modulo as an efficient first order setting simulating higher order.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baader, F., Nipkow, T.: Term Rewriting and all That. CUP (1998)

    Google Scholar 

  2. Bonacina, M.P., Dershowitz, N.: Abstract canonical inference. ACM Trans. Comput. Logic 8 (2007)

    Google Scholar 

  3. Brauner, P., Houtmann, C., Kirchner, C.: Principles of superdeduction. In: LICS, IEEE Computer Society, Los Alamitos (to appear, 2007)

    Google Scholar 

  4. Burel, G.: Unbounded proof-length speed-up in deduction modulo. Research report (2007), Available at http://hal.inria.fr/inria-00138195

  5. Buss, S.R.: Polynomial size proofs of the propositional pigeonhole principle. The Journal of Symbolic Logic 52, 916–927 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  6. Buss, S.R.: On Gödel’s theorems on lengths of proofs I: Number of lines and speedup for arithmetics. The Journal of Symbolic Logic 59, 737–756 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  7. Cook, S.A., Reckhow, R.A.: The relative efficiency of propositional proof systems. The Journal of Symbolic Logic 44, 36–50 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  8. Cousineau, D., Dowek, G.: Embedding pure type systems in the lambda-pi-calculus modulo. In: TLCA (to appear, 2007)

    Google Scholar 

  9. Curry, H.B., Feys, R., Craig, W.: Combinatory Logic, vol. 1. Elsevier Science Publishers B. V (North-Holland), Amsterdam (1958)

    MATH  Google Scholar 

  10. Dershowitz, N., Kirchner, C.: Abstract Canonical Presentations. Theoretical Computer Science 357, 53–69 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  11. Dowek, G., Hardin, T., Kirchner, C.: HOL-λσ an intentional first-order expression of higher-order logic. Math. Structures Comput. Sci. 11, 1–25 (2001)

    Article  MathSciNet  Google Scholar 

  12. Dowek, G., Hardin, T., Kirchner, C.: Theorem proving modulo. Journal of Automated Reasoning 31, 33–72 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  13. Dowek, G., Werner, B.: Proof normalization modulo. The Journal of Symbolic Logic 68, 1289–1316 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  14. Dowek, G., Werner, B.: Arithmetic as a theory modulo. In: Giesl, J. (ed.) RTA 2005. LNCS, vol. 3467, pp. 423–437. Springer, Heidelberg (2005)

    Google Scholar 

  15. Gentzen, G.: Untersuchungen über das logische Schliessen (The Collected Papers of Gerhard Gentzen as Investigations into Logical Deduction). Translated In: Szabo, M.E. (ed.) Mathematische Zeitschrift, vol. 39, pp. 176–210, 405–431 (1934)

    Google Scholar 

  16. Gödel, K.: On the length of proofs. In: Feferman, S., et al. (eds.) Kurt Gödel: Collected Works, vol. 1, pp. 396–399. Oxford University Press, Oxford (1986)

    Google Scholar 

  17. Guglielmi, A.: Polynomial size deep-inference proofs instead of exponential size shallow-inference proofs (2004), Available at http://cs.bath.ac.uk/ag/p/AG12.pdf

  18. Kirchner, F.: A finite first-order theory of classes (2006), Available at http://www.lix.polytechnique.fr/Labo/Florent.Kirchner/doc/fotc2006.pdf

  19. Mostowski, A., Robinson, R.M., Tarski, A.: Undecidable Theories. In: Studies in Logic and the Foundations of Mathematics, North-Holland, Amsterdam (1953)

    Google Scholar 

  20. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL — A Proof Assistant for Higher-Order Logic. In: Nipkow, T., Paulson, L.C., Wenzel, M. (eds.) Isabelle/HOL. LNCS, vol. 2283, Springer, Heidelberg (2002)

    Google Scholar 

  21. Parikh, R.J.: Some results on the length of proofs. Transactions of the ACM 177, 29–36 (1973)

    MATH  MathSciNet  Google Scholar 

  22. The Coq Development Team: The Coq Proof Assistant Reference Manual. INRIA. Version 8.0 (2006), available at http://coq.inria.fr/doc/main.html

Download references

Author information

Authors and Affiliations

Authors

Editor information

Jacques Duparc Thomas A. Henzinger

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Burel, G. (2007). Unbounded Proof-Length Speed-Up in Deduction Modulo. In: Duparc, J., Henzinger, T.A. (eds) Computer Science Logic. CSL 2007. Lecture Notes in Computer Science, vol 4646. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74915-8_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74915-8_37

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74914-1

  • Online ISBN: 978-3-540-74915-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics