Skip to main content

An Analysis of the Effects of Lifetime Learning on Population Fitness and Diversity in an NK Fitness Landscape

  • Conference paper
Advances in Artificial Life (ECAL 2007)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4648))

Included in the following conference series:

  • 1575 Accesses

Abstract

This paper examines the effects of lifetime learning on the diversity and fitness of a population. Our experiments measure the phenotypic diversity of populations evolving by purely genetic means (population learning) and of others employing both population learning and lifetime learning. The results obtained show, as in previous work, that the addition of lifetime learning results in higher levels of fitness than population learning alone. More significantly, results from the diversity measure show that lifetime learning is capable of sustaining higher levels of diversity than population learning alone.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hinton, G.E., Nowlan, S.J.: How learning guides evolution. Complex Systems 1, 495–502 (1987)

    MATH  Google Scholar 

  2. Nolfi, S., Parisi, D.: Learning to adapt to changing environments in evolving neural networks. Adaptive Behavior 5(1), 75–97 (1996)

    Article  Google Scholar 

  3. Floreano, D., Mondada, F.: Evolution of plastic neurocontrollers for situated agents. In: Animals to Animats, vol. 4 (1996)

    Google Scholar 

  4. Sasaki, T., Tokoro, M.: Adaptation toward changing environments: Why darwinian in nature? In: Husbands, P., Harvey, I. (eds.) Fourth European Conference on Artificial Life, pp. 145–153. MIT Press, Cambridge (1997)

    Google Scholar 

  5. Pereira, F.B., Costa, E.: How learning improves the performance of evolutionary agents: A case study with an information retrieval system for a distributed environment. In: Proceedings of the International Symposium on Adaptive Systems: Evolutionary Computation and Probabilistic Graphical Models (ISAS 2001), pp. 19–23 (2001)

    Google Scholar 

  6. Watson, J., Wiles, J.: The rise and fall of learning: A neural network model of the genetic assimilation of acquired traits. In: Proceedings of the 2002 Congress on Evolutionary Computation (CEC 2002), pp. 600–605 (2002)

    Google Scholar 

  7. Curran, D., O’Riordan, C.: On the design of an artificial life simulator. In: Palade, V., Howlett, R.J., Jain, L. (eds.) KES 2003. LNCS, vol. 2773, pp. 549–555. Springer, Heidelberg (2003)

    Google Scholar 

  8. Curran, D., O’Riordan, C.: Artificial life simulation using marker based encoding. In: Proceedings of the 2003 International Conference on Artificial Intelligence (IC-AI 2003), vol. II., Las Vegas, Nevada, USA, pp. 665–668 (2003)

    Google Scholar 

  9. Mayley, G.: Guiding or hiding: Explorations into the effects of learning on the rate of evolution. In: Proceedings of the Fourth European Conference on Artificial Life, MIT Press, Cambridge (1997)

    Google Scholar 

  10. O’Reilly, U.M.: Using a distance metric on genetic programs to understand genetic operators. In: IEEEInternational Conference on Systems, Man, and Cybernetics, vol. 5, pp. 4092–4097. IEEE Computer Society Press, Los Alamitos (1997)

    Google Scholar 

  11. De Jong, K.A.: Analysis of Behavior of a Class of Genetic Adaptive Systems. PhD thesis, The University of Michigan (1975)

    Google Scholar 

  12. Booker, L.B.: Improving the performance of genetic algorithms in classifier systems. In: Proc. of the International Conference on Genetic Algorithms and Their Applications, Pittsburgh, PA, pp. 80–92 (1985)

    Google Scholar 

  13. Collins, R.J., Jefferson, D.R.: Selection in massively parallel genetic algorithms. In: ICGA, pp. 249–256 (1991)

    Google Scholar 

  14. Darwin, C.: The Origin of Species: By Means of Natural Selection or the Preservation of Favoured Races in the Struggle for Life. Bantam Press, London (1859)

    Google Scholar 

  15. Baldwin, J.M.: A new factor in evolution. American Naturalist 30, 441–451 (1896)

    Article  Google Scholar 

  16. Lamarck, J.B.: Philosophie Zoologique. Chez Dentu, Paris (1809)

    Google Scholar 

  17. Boers, E., Borst, M., Sprinkhuizen-Kuyper, I.: Evolving Artificial Neural Networks using the “Baldwin Effect”. Technical Report TR 95-14 (1995)

    Google Scholar 

  18. Turney, P.D.: How to shift bias: Lessons from the baldwin effect. Evolutionary Computation 4(3), 271–295 (1996)

    Google Scholar 

  19. Suzuki, R., Arita, T.: The baldwin effect revisited: Three steps characterized by the quantitative evolution of phenotypic plasticity. In: Banzhaf, W., Ziegler, J., Christaller, T., Dittrich, P., Kim, J.T. (eds.) ECAL 2003. LNCS (LNAI), vol. 2801, pp. 395–404. Springer, Heidelberg (2003)

    Google Scholar 

  20. Arita, T., Suzuki, R.: Interactions between learning and evolution: The outstanding strategy generated by the baldwin effect. In: Proceedings of Artificial Life VII, pp. 196–205. MIT Press, Cambridge (2000)

    Google Scholar 

  21. Liu, Y., Yao, X., Higuchi, T.: Evolutionary ensembles with negative correlation learning. IEEE Transactions on Evolutionary Computation 4(4), 380–387 (2000)

    Article  Google Scholar 

  22. Opitz, D.W., Shavlik, J.W.: Generating accurate and diverse members of a neural-network ensemble. In: Touretzky, D.S., Mozer, M.C., Hasselmo, M.E. (eds.) Advances in Neural Information Processing Systems, vol. 8, pp. 535–541. MIT Press, Cambridge (1996)

    Google Scholar 

  23. Brown, G.: Diversity in Neural Network Ensembles. PhD thesis, University of Birmingham (2003)

    Google Scholar 

  24. Burke, E.K., Gustafson, S., Kendall, G.: Diversity in genetic programming: an analysis of measures and correlation with fitness. IEEE Trans. Evolutionary Computation 8(1), 47–62 (2004)

    Article  Google Scholar 

  25. Eriksson, R.I.: An initial analysis of the ability of learning to maintain diversity during incremental evolution. In: Freitas, A.A., Hart, W., Krasnogor, N., Smith, J. (eds.) Data Mining with Evolutionary Algorithms, Las Vegas, Nevada, USA, pp. 120–124 (2000), citeseer.ist.psu.edu/eriksson00initial.html

  26. Curran, D., O’Riordan, C.: Increasing population diversity through cultural learning. Adaptive Behavior 14(4) (2006)

    Google Scholar 

  27. Kaufmann, S.A.: Adaptation on rugged fitness landscapes. Lectures in the Sciences of Complexity 1, 527–618 (1989)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Fernando Almeida e Costa Luis Mateus Rocha Ernesto Costa Inman Harvey António Coutinho

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Curran, D., O’Riordan, C., Sorensen, H. (2007). An Analysis of the Effects of Lifetime Learning on Population Fitness and Diversity in an NK Fitness Landscape. In: Almeida e Costa, F., Rocha, L.M., Costa, E., Harvey, I., Coutinho, A. (eds) Advances in Artificial Life. ECAL 2007. Lecture Notes in Computer Science(), vol 4648. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74913-4_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74913-4_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74912-7

  • Online ISBN: 978-3-540-74913-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics